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Motivation

Context
Necessity to massively replace fossil-fired power plants by renewable
technologies −→ intermittent: this requires a large-scale use of
electricity storage
Pumped Hydroelectric Energy Storage (PHES) = 86% of total
electricity storage in the world

Aim of this work
Define a realistic and tractable model to study the problem of the
optimal strategy for a price taker PHES
Study its impact on the short-term equilibrium in the electricity
market in different frameworks
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Literature

Small literature
Literature on optimal control of storage (Carmona and Ludkovski,
Cruise and Zachary, etc.)
A review on the development of PHES by Barbour et al
Price formation on electricity market (Fujii and Takahashi or Aïd et al
with Mean Field Games), usually implies the study of a
Forward-Backward Stochastic Differential Equation
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Storage

Consider a PHES whose state process, noted Q, represents the tank level
and follows the SDE:

dQt = −qtdt + ρdW 1
t . (1)

qt , the control process, is the withdrawal rate (positive or negative).
Here, ρ describes the random amount of energy lost/gained because of
external factors (example: drought).
The price P is considered stochastic and exogenous. The stochastic
optimal control problem for a single agent reads:

V (0,Q0) = inf
q
E
[∫ T

0
−(Psqs − αq2

s ) +
β

2
(Qs − Q0)

2ds +
γ

2
(QT − Q0)

2
]
.

with γ,β,α strictly positive numbers.
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Storage

Proposition
The closed loop optimal control process can be expressed as follows :

qt =

√
β

α
f (t,T )(Qt − Q0)− E

[∫ T

t
f1(t,T , s)

Ps

2α
ds|Ft

]
+

Pt

2α

with u =
√
αβ−γ√
αβ+γ

and f , f1 auxiliary functions depending on α, β, γ and T .
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Global framework
With this knowledge, the focus shifts to viewing the electricity market as a
platform for interaction between the energy demand D and three types of
players:

Players
Renewable producers: they always bid their full, stochastic, capacity
Rt

Conventional producers: they use a supply function C (Pt),
supposedly known and depending only on the electricity price
Storage facilities: they have their optimal strategy found earlier qt .

The price process is defined in this way :

Pt = inf {P : Dt ≤ Rt + C (P) + qt} ∧ P̄

with P̄ an upper bound for the electricity price. Here there is only one big
storage representing the aggregation of every small player.
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Price formation
Toy model: the deterministic case

Assumptions
We ignore the random events that could affect the tank level of the
PHES.
There is no renewable production
The energy demand is deterministic
C is a linear function, C (P) = C0 + CP

the cap price is P̄ = ∞

−→ q is deterministic
−→ P is deterministic
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Toy model

The main positive aspect of this toy model is that we can derive an explicit
expression for the withdrawal rate and the electricity price :

qt = −c1
β

α
cosh(

√
β

α
t) +

Pt

α
+

∫ t

0

√
β

α
sinh(

√
β

α
(t − s))

Ps

2α
ds

P(t) =
Dt − C0 −

√
β
α

2α G (t) + c1
β
α cosh(

√
β
α t)

C + 1
2α

∧ P̄

with c1 a constant depending on α, β and γ, G a given function.

Proposition
For any β, γ > 0,

∀t < T , |∂Pt

∂t
| −→
α−→0

2β
∫ t

0
(Ds − C0) sinh(

√
2Cβ(t − s))ds (2)
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Numerical illustration
Blue : Abundant storage, Orange : Medium amount of storage, Black : no
storage.
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Price formation
Stochastic case with N storage agents

Let us assume the presence of N different categories of storage, each with
unique parameters and characteristics.

Agent j

dQ j
t = −qjtdt + ρjdW 1,j

t

He solves the following problem:

V (0,Q j
0) = inf

qjt

E

∫ T

t
−(Ptq

j
t −αj(qjt)

2)+
βj

2
(Q j

t −Q0)
2dt+

γj

2
(Q j

T −Q j
0)

2

and his optimal strategy is

qjt =

√
βj

αj
f j(t,T , t)(Q j

t − Q j
0)− E

[∫ T

t
f j(t,T ; r)

Ps

2αj
ds|F j

t

]
+

Pt

2αj
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Price formation
Stochastic case with N storage agents

As before, we look at the electricity market as a platform for interactions
between three types of players.

Players
Renewable producers: they always bid their full, stochastic, capacity
Rt

Conventional producers: they use a supply function C (Pt),
supposedly known and depending only on the electricity price
Storage facilities: they have their optimal strategy found earlier qt .
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Price formation
Stochastic case

In this case, the price process is defined in this way:

Pt = inf

P : Dt ≤ Rt + C (P) +
∑
j

qjt

 ∧ P̄

Theorem

Suppose that the residual demand D̃t := Dt − Rt can be written in this
way :

dD̃t = µ(t, D̃t)dt + σ(t, D̃t)dW
2
t , D̃0 = D̄0

where µ and σ satisfy Lipschitz-type and non-degeneracy conditions.
There exists a unique price process resulting from the above definition in
[0,T ].
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FBSDE

Forward Backward Stochastic Differential Equation
The processes X ,Y and Z are solution to the following
Forward-Backward Stochastic Differential Equation (FBSDE):
∀t ∈ [0,T ],Xt = x +

∫ t

0
b(s,Xs ,Ys)ds +

∫ t

0
σ(s,Xs)dWs−→ Forward

∀t ∈ [0,T ],Yt = YT +

∫ T

t
f (s,Xs ,Ys)ds −

∫ T

t
ZsdWs−→ Backward

(3)
with b, σ and f deterministic functions.
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Sketch of the proof
For all j ≤ n, we can rewrite qj as follows:

qjt =

√
βj

αj
f j(t,T , t)(Q j

t − Q j
0) +

Pt

2αj
− F j

1(t,T )Y j,1
t + F j

2(t,T )Y j,2
t

with Y1 and Y2 satisfying BSDEs and some functions F j
1 and F j

2 depending solely
on α, β, γ.
We can prove that looking for the equilibrium situation is equivalent to studying
the following FBSDE :

Pt = inf
{
P : D̃t ≤ C (Pt) +

∑n
j=1 q

j
t

}
∧ P̄

dD̃t = µ(t, D̃t)dt + σt(t, D̃t)dW
2
t

∀j ≤ n

dQ j
t = −qjtdt + ρjdW

(1,j)
t

dY j,1
t = −e

−t

√
βj

αj Pt

2αj
dt + Z j,1

t dWt ,

dY j,2
t = −e

t

√
βj

αj Pt

2αj
dt + Z j,2

t dWt , Y j,1
T = Y j,2

T = 0
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Numerical illustrations

Residual demand is calibrated using an Ornstein Uhlenbeck. Indeed,
define (At)t such that

At := D̃t − D̄t

with D̄ being the hourly mean of the residual demand. A is then taken to
be an Orstein-Uhlenbeck process:

At = A0 −
∫ t

0
θ(At − µ)dt +

∫ t

0
σWt

=⇒ Calibrated using French data over 30 days from ENTSOE.
The conventional supply function is taken to be linear C0 + CP .
=⇒ C0 is an adjustment variable.
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Numerical Illustration
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Numerical illustration
Numerical scheme

Introduce the following FBSDE :
∀t ∈ [0,T ],Xt = x +

∫ t

0
b(s,Xs ,Ys)ds +

∫ t

0
σ(s,Xs)dWs

∀t ∈ [0,T ],Yt =

∫ T

t
f (s,Xs ,Ys)ds −

∫ T

t
ZsdWs

(4)

with b, σ and f deterministic functions.
There exists u and v such that (X ,Y ,Z ) are connected through the
following formulas :

Yt = u(t,Xt), Zt = v(t,Xt)
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Numerical illustration
Numerical scheme

The numerical scheme for a time interval divided into p segments can be
expressed as follows, with up,0i = 0, at the mth iteration:

X p,m
0 = x

X p,m
i+1 = X p,m

i + b(ti ,X
p,m
i , up,m−1

i (X p,m
i ))h + σ(ti ,X

p,m
i )∆Wi+1,

Y p,m
p = 0,

Zp,m
i = 1

hE[Y
p,m
i+1 ∆Wi+1|Fti ]

Y p,m
i = E[Y p,m

i+1 + f (ti ,X
p,m
i ,Y p,m

i+1 )h|Fti ]

up,mi (X p,m
i ) = Y p,m

i

with h = T
p .
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Numerical illustrations
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Numerical illustrations
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Numerical Illustration
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Wind Farm

Is it worth it for a wind farm owner to invest in storage?
=⇒ Consider a windfarm project with a capacity of 100MW.
Revenues without storage: 44152€.
Slightly modify our model to integrate the possibility to have a storage
combined with an external source of energy, such as a wind farm:

dQt = (−qt + κt)dt + ρtdW
1,1
t

Revenues with a storage of 100MW.h: 52367€.
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Conclusion

Conclusion
We introduced a tractable model to derive with classic methods an
explicit expression for the optimal strategy of a storage system,
considering both deterministic and stochastic exogenous price
processes.
We proved the existence and uniqueness of the price process resulting
from short-term equilibrium between the energy demand, renewable
production, conventional producers, and storage players.
We observed in the deterministic case that increasing storage capacity
led to a compression of electricity prices
The more storage there is on the electricity market, the less volatility
there is from renewable energy producers.
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Conclusion

On going work
Generalize the Brownian noise of the storage model.
Introducing a mean-field framework to better describe the variety of
storage agents.
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Thank you!
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