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Motivation

@ Necessity to massively replace fossil-fired power plants by renewable
technologies — intermittent: this requires a large-scale use of
electricity storage

@ Pumped Hydroelectric Energy Storage (PHES) = 86% of total
electricity storage in the world

Aim of this work

@ Define a realistic and tractable model to study the problem of the
optimal strategy for a price taker PHES

@ Study its impact on the short-term equilibrium in the electricity
market in different frameworks
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Literature

Small literature

o Literature on optimal control of storage (Carmona and Ludkovski,
Cruise and Zachary, etc.)

@ A review on the development of PHES by Barbour et al

@ Price formation on electricity market (Fujii and Takahashi or Aid et al
with Mean Field Games), usually implies the study of a
Forward-Backward Stochastic Differential Equation
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© Optimal control of storage
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Consider a PHES whose state process, noted Q, represents the tank level
and follows the SDE:
dQ: = —q:dt + pdW}. (1)

ge, the control process, is the withdrawal rate (positive or negative).
Here, p describes the random amount of energy lost/gained because of
external factors (example: drought).

The price P is considered stochastic and exogenous. The stochastic
optimal control problem for a single agent reads:

-
V(0, Qo) = ing [/ —(Psgs — aq?) + g(Qs — Qo)’ds + %(QT — Qo)?
0

with ~,8,« strictly positive numbers.
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Proposition

The closed loop optimal control process can be expressed as follows :

T Ps P
qt: \/gf(t, T)(Qt—QO)—]E |:/t‘ fl(t, T,s)gds‘ft +i

with v = ‘/\/%J:: and f, fi auxiliary functions depending on o, 3,y and T.
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Overview

© Global framework
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Global framework

With this knowledge, the focus shifts to viewing the electricity market as a
platform for interaction between the energy demand D and three types of

players:

@ Renewable producers: they always bid their full, stochastic, capacity
Rt

e Conventional producers: they use a supply function C(P;),
supposedly known and depending only on the electricity price

o Storage facilities: they have their optimal strategy found earlier g;.

The price process is defined in this way :

P, =inf{P:D; <R+ C(P)+q:} AP

with P an upper bound for the electricity price. Here there is only one big
storage representing the aggregation of every small player.
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Price formation

Toy model: the deterministic case

@ We ignore the random events that could affect the tank level of the
PHES.

@ There is no renewable production
@ The energy demand is deterministic
e C is a linear function, C(P) = Gy + CP

e the cap price is P = oo

— q is deterministic
— P is deterministic
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The main positive aspect of this toy model is that we can derive an explicit
expression for the withdrawal rate and the electricity price :

g = —qﬁcosh(\f ++/ \/>smh \f ))%ds

Dt CO_ \/>

S2G(t)+al 5 cosh t)
P(t) = 2 (2o NP
C+ 2a

with ¢; a constant depending on «, 8 and 7, G a given function.

Proposition

For any 5,7 > 0,

Vi< T, \8Pt

| — 28 /t(Ds — Co)sinh(1/2CH(t —s))ds  (2)
0
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Price formation

Stochastic case with N storage agents

Let us assume the presence of N different categories of storage, each with
unique parameters and characteristics.

Agent |

dQl = —qldt + pdw}

He solves the following problem:

V(0. Q) = infE / (Pedi— () + 2 ( Qe+ L (cﬂT QY

t

and his optimal strategy is

d= 2o o@-ah e[ PeTinls
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Price formation

Stochastic case with N storage agents

As before, we look at the electricity market as a platform for interactions
between three types of players.

@ Renewable producers: they always bid their full, stochastic, capacity
R

e Conventional producers: they use a supply function C(P;),
supposedly known and depending only on the electricity price

@ Storage facilities: they have their optimal strategy found earlier g;.

R. Silvente (ENSAE) Optimal control of storage CEEM 17 /32



Price formation

Stochastic case

In this case, the price process is defined in this way:

P.=inf{ P:D; <R+ C(P —i—Zth AP

Suppose that the residual demand D; := D; — R can be written in this
way :

dD; = pu(t, Dy)dt + o(t, D;)dW?, Do = Dy

where p and o satisfy Lipschitz-type and non-degeneracy conditions.

There exists a unique price process resulting from the above definition in
[0, T].
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Forward Backward Stochastic Differential Equation

The processes X, Y and Z are solution to the following
Forward-Backward Stochastic Differential Equation (FBSDE):

t t
vVt e [0, T], X = x +/ b(s, Xs, Ys)ds +/ o (s, Xs)dWs
0 0
T
Vte [0, T], Y: = YT+/

t

with b, o and f deterministic functions.

-
f(s, Xs, Ys)ds — / ZsdW,— Backward
t

3)

v

R. Silvente (ENSAE) Optimal control of storage CEEM

19/32



Sketch of the proof

For all j < n, we can rewrite ¢ as follows:

¢ = \rﬂ(t T, 6)(Q — cyo)+ — F(t, T)Y + Fi(t, T)YI?

with Y7 and Y5 satisfying BSDEs and some functions F{ and Fé depending solely

on a, 3,7.
We can prove that looking for the equilibrium situation is equivalent to studying

the following FBSDE :

Pe=inf{P: By < C(P)+ ) dl} AP
dD; = u(t, Dy)dt + o (t, D;)dW?

Vi<n

dQ) = —gldt + pdW Y

. —t/2 P,
dyit = —e t\Fz _dt + ZtdW,,

BJ

: 2 p
dv{? = —e'V o Ldt 4 ZF2aw., vyt = vpt =0
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Numerical illustrations

Residual demand is calibrated using an Ornstein Uhlenbeck. Indeed,
define (A¢): such that L
At = Dt — Dt

with D being the hourly mean of the residual demand. A is then taken to
be an Orstein-Uhlenbeck process:

t t
At = AO — / G(At - ,U,)dt +/ O'Wt
0 0

— Calibrated using French data over 30 days from ENTSOE.
The conventional supply function is taken to be linear Gy + CP.
= (o is an adjustment variable.
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Numerical Illustration
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Numerical illustration

Numerical scheme

Introduce the following FBSDE :

t t
vt e o, T],Xt:x—i—/ b(s, X, Ys)ds+/ o (s, X )dW,
0 0

T T (4)
Vte[0,T],Y: = / f(s, Xs, Ys)ds — / Z.dW,
t t

with b, o and f deterministic functions.

There exists u and v such that (X, Y, Z) are connected through the
following formulas :

Yt = U(t7Xt), Zt = V(t,Xt)
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Numerical illustration

Numerical scheme

The numerical scheme for a time interval divided into p segments can be
expressed as follows, with uf”o =0, at the mt" iteration:

XO M =X
XP = XP™ 4 b(t;, XD, uP Y XP™M) b+ o (t, XPT) AW,
Yp™ =0,

zPm — l]E[Y,'iTAW,-HIFt,-]
YPT = BIYED + £(t;, XD YO b Fy
UM (XPT) = Y P

\

. _ T
with h—;.
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Numerical illustrations
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Numerical illustrations
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Numerical illustrations

Volatility of the electricity price given the amount of storage in the market
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Numerical Illustration

Comparative Agent Revenue: Alone versus a market with multiple storage agents
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Is it worth it for a wind farm owner to invest in storage?

— Consider a windfarm project with a capacity of 100MW.

Revenues without storage: 44152€.

Slightly modify our model to integrate the possibility to have a storage
combined with an external source of energy, such as a wind farm:

dQ: = (—qr + kt)dt + Ptthl’l

Revenues with a storage of 100MW.h: 52367€.
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Conclusion

@ We introduced a tractable model to derive with classic methods an
explicit expression for the optimal strategy of a storage system,
considering both deterministic and stochastic exogenous price
processes.

@ We proved the existence and uniqueness of the price process resulting
from short-term equilibrium between the energy demand, renewable
production, conventional producers, and storage players.

@ We observed in the deterministic case that increasing storage capacity
led to a compression of electricity prices

@ The more storage there is on the electricity market, the less volatility
there is from renewable energy producers.
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Conclusion

On going work

@ Generalize the Brownian noise of the storage model.

@ Introducing a mean-field framework to better describe the variety of
storage agents.
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Thank you!

R. Silvente (ENSAE) Optimal control of storage CEEM 32/32



	Motivation
	Optimal control of storage
	Global framework
	Price formation
	Toy model: the deterministic case with one storage agent
	Stochastic case

	Conclusion

