Decarbonizing electricity generation with intermittent sources of energy

Stefan Ambec and Claude Crampes

Toulouse School of Economics

December 2015

Motivation

- Intermittent sources of energy (wind, solar,...)
- Retail price of electricity does not vary with wind or sun
- Pollution (greenhouse gases, SO2, NOX,...)
- Several policy instruments:
 - Carbon tax
 - ► Feed-in tariff (FIT) or feed-in premium (FIP)
 - Renewable portfolio standard (RPS)
- Impact of policies with intermittent energy and non-reactive consumers

Overview

- First-best energy mix with wind power capacity back-up with thermal power
- Carbon tax implements first-best but not FIT or RPS: too much electricity consumption
- Tax on electricity consumption should complement FIT or RPS to implement first-best
- Social benefit of energy storage and smart meters
- With a monopoly thermal power producer:
 - Introduction of wind power competitive fringe increases electricity price
 - First-best achieved with state-contingent carbon tax or price cap and carbon tax

Related literature

 Optimal and decentralized mix of energy with intermittent sources:

Ambec and Crampes (2012), Rubin and Babcock (2013), Garcia, Alzate and Barrera (2012), Rouillon (2013), Baranes, Jacquemin and Poudou (2014)

 Pollution externalities and R&D spillovers with clean and dirty technologies:
 Fischer and Newell (2008), Acemoglu et al. (2012)

Fossil source f

- Production q_f with marginal cost c
- Capacities K_f with marginal r_f
- Capacity constraint $q_f \leq K_f$
- Long term private marginal cost of 1 kWh is $c + r_f$
- Environmental damage par kWh of fossil fuel $\delta > 0$
- Long term social marginal cost of 1 kWh is $c + r_f + \delta$

Intermittent source i

- Production q_i with 0 marginal cost
- ► Capacities K_i with marginal cost r_i ∈ [r_i, +∞) with distribution f and cumulative F and total capacity K
- Capacity constraint $q_i \leq K_i$
- Available only in state w (not in state w̄) which occurs with probability ν (probability 1 − ν)
- Long term marginal cost of ν kWh (1 kWh in state w) is r_i

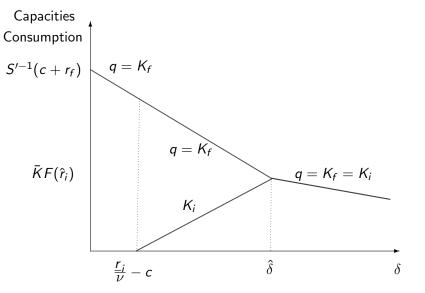
• Long term marginal cost of 1 kWh on average $\frac{r_i}{\nu}$

Consumers

- Utility or Surplus S(q) concave (S' > 0, S'' < 0)
- Demand function $D(p) = S'^{-1}(p)$
- Constant retail price / non-reactive consumers:
 q = q^w = q^{w̄} = K_f

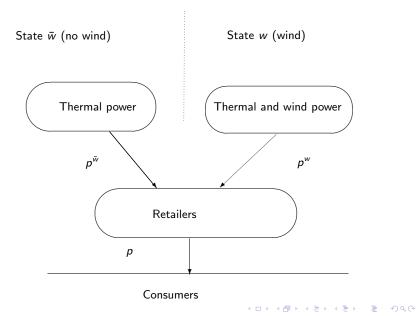
Social optimum

 K_f , K_i and q_f^w maximize:

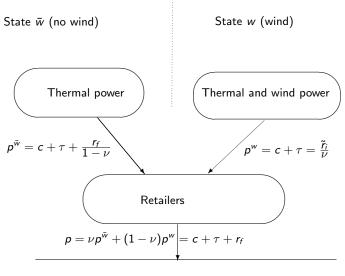

$$\nu \left[S(\bar{K}F(K_i) + q_f^w) - (c + \delta)q_f^w \right] + (1 - \nu) \left[S(K_f) - (c + \delta)K_f \right] \\ -\bar{K} \int_{\underline{r}_i}^{\bar{r}_i} r_i dF(r_i) - r_f K_f$$

s.t.

$$\begin{aligned} & K_i + q_f^w &= K_f \\ & K_f \geq q_f^w \geq 0 \\ & K_i &= \bar{K}F(\tilde{r}_i) \end{aligned}$$

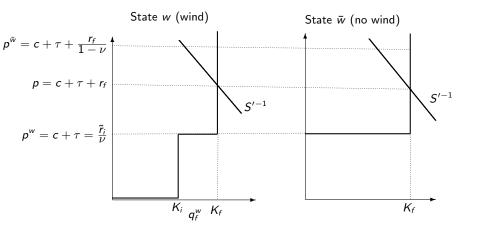

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Social optimum



◆□ → ◆昼 → ◆臣 → ◆臣 → ◆□ →

Competitive equilibrium


Competitive equilibrium with carbon tax au

Consumers

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Merit order

First result

• Pigou tax $\tau = \delta$ implements first-best

Feed-in tariff (FIT)

- Regulated price for intermittent energy pⁱ
- Tax t per kWh consumed
- Budget-balance constraint:

$$K_f t \geq \nu (p^i - p^w) K_i$$

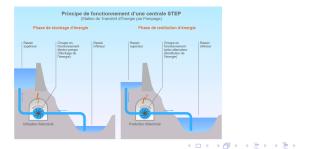
- First-best if pⁱ = c + δ and p + t = c + r_f + δ therefore t = δ: budget surplus!
- If pⁱ = c + δ to obtain K_i and tax t that binds the budget-balance constraint then over-consumption!
- Same story with feed-in premium

Renewable Portfolio Standard (RPS)

- ► Share a of energy consumption supplied with renewable energy
- Renewable energy credits (REC) issue for each kWh of renewable energy
- Retailers buy REC at price g to comply with RPS
- Zero profit condition for wind power producers and retailers:

$$p^w + g = rac{ ilde{r}_i}{
u}$$

$$p = \nu p^{w} + (1 - \nu) p^{\bar{w}} + \alpha g$$


- Optimal share α^* leads to a price of REC $g = \delta$
- Retail price p = c + r_f + δα < c + r_f + δ too low, too much electricity consumption
- Must be complemented with a tax on electricity or fossil fuel

$$\tau = \delta \left(1 - \alpha \right) < \delta$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Energy storage facility

э

Energy storage

- s kWh can stored in state w to be used in stated \bar{w}
- ► Energy cost of storing (pumping) λ ≤ 1: λs kWh produced in state w̄ with s stored in state w
- Private and social benefit of storing energy?
- Efficient storage maximizes:

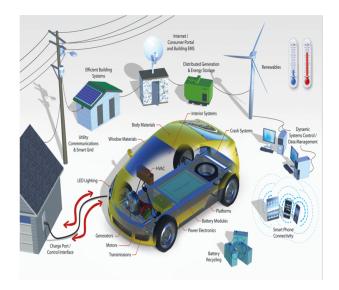
$$\nu \left[S(\bar{K}F(K_i) + q_f^w - s) - (c + \delta)q_f^w \right] \\ + (1 - \nu) \left[S(K_f + \lambda s) - (c + \delta)K_f \right] \\ - \bar{K} \int_{\underline{r}_i}^{\tilde{r}_i} r_i dF(r_i) - r_f K_f$$

s.t.

$$K_i + q_f^w - s = K_f + \lambda s$$

Social and private marginal benefit of storage

The FOCs lead to a social marginal benefit of:


$$\lambda[(1-\nu)(c+\delta)+r_f]-\tilde{r}_i$$

Private marginal benefit of storage with carbon tax:

$$(1-\nu)p^{\bar{w}}-\nu p^{w}$$

- ► Equal to the social benefit with equilibrium prices $p^{\bar{w}} = c + \tau + \frac{r_f}{1 \nu}$, $p^w = \frac{\tilde{r}_i}{\nu}$ and Pigou tax $\delta = \tau$
- Private incentives in competitive market aligned with social welfare

Smart meters with contingent pricing

Smart meters with state-contingent prices

- Share β of reactive consumers paying wholesale price p^w and p^w
- Share 1 − β of non reactive consumers paying fixed price p = νp^w + (1 − ν)p^{w̄}
- Market clearing conditions:

$$\begin{split} & K_f = \beta q_r^{\bar{w}} + (1-\beta) q_{\bar{r}} \\ & \bar{K}F(\tilde{r}_i) + q_f^w = \beta q_r^w + (1-\beta) q_{\bar{r}} \end{split}$$

Marginal benefit of making consumers reactive

• Expected welfare with a proportion β of reactive consumers:

$$\beta[\nu S(q_r^w) + (1-\nu)S(q_r^{\bar{w}})] + (1-\beta)S(q_{\bar{r}}) - \nu(c+\delta)q_f^w - (1-\nu)(c+\delta)K_f$$
$$-\bar{K}\int_{\underline{r}_i}^{\tilde{r}_i} r_i dF(r_i) - r_f K_f.$$

• Differentiating with respect to β :

$$\underbrace{[\nu S(q_r^w) + (1-\nu)S(q_r^{\bar{w}}) - S(q_{\bar{r}})]}_{-} - \tilde{r}_i \underbrace{(q_r^w - q_{\bar{r}})}_{+}$$
$$+ [(1-\nu)(c+\delta) + r_f] \underbrace{(q_{\bar{r}} - q_r^{\bar{w}})}_{+}$$

Risk-averse consumers prefer fixed price contract

Environmental policy with market power

- Monopoly thermal power producer
- Competitive fringe of of wind power producers
- Impact of competition from wind power on price?
- Optimal tax? Regulation instruments to reach first-best?

Program of the monopoly thermal power

 q_f^w and K_f maximize:

$$\nu \left[P(q_f^w + K_i) - (c + \tau^w) \right] q_f^w + (1 - \nu) \left[P(K_f) - (c + \tau^{\bar{w}}) \right] K_f - r_f K_f$$

s.t.

$$P(K_i + q_f^w) = \frac{\tilde{r}_i}{\nu}$$
$$K_i = \bar{K}F(\tilde{r}_i)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

First-order conditions

$$\begin{aligned} q_{f}^{w} &: P(q_{f}^{w} + K_{i}) + P'(q_{f}^{w} + K_{i}) \left(1 + \frac{dK_{i}}{dq_{f}^{w}}\right) q_{f}^{w} = c + \tau^{w} \\ K_{f} &: P(K_{f}) + P'(K_{f}) K_{f} = c + \tau^{\bar{w}} + \frac{r_{f}}{1 - \nu} \end{aligned}$$

Implementation of first-best

State-contigent taxes;

$$\tau^{w} = \delta + \frac{p^{w}}{\epsilon} \left(1 + \frac{dK_{i}}{dq_{f}^{w}}\right) \frac{q_{f}^{w}}{K_{f}}$$
$$\tau^{\bar{w}} = \delta + \frac{p^{\bar{w}}}{\epsilon}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

with $\tau^{\bar{w}} < \tau^w$

• Price cap $p^{\bar{w}}$ and carbon tax τ^{w}

 Environmental policies in a model with intermittent energy (wind power) and constant retailing electricity price

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Environmental policies in a model with intermittent energy (wind power) and constant retailing electricity price
- Aim of environmental policy: reducing electricity consumption and increasing wind power production

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Environmental policies in a model with intermittent energy (wind power) and constant retailing electricity price
- Aim of environmental policy: reducing electricity consumption and increasing wind power production

A carbon tax does the job

- Environmental policies in a model with intermittent energy (wind power) and constant retailing electricity price
- Aim of environmental policy: reducing electricity consumption and increasing wind power production

- A carbon tax does the job
- Too much electricity with FIT, FIP or RPS

- Environmental policies in a model with intermittent energy (wind power) and constant retailing electricity price
- Aim of environmental policy: reducing electricity consumption and increasing wind power production

- A carbon tax does the job
- Too much electricity with FIT, FIP or RPS
- Marginal value of storage = cost difference

- Environmental policies in a model with intermittent energy (wind power) and constant retailing electricity price
- Aim of environmental policy: reducing electricity consumption and increasing wind power production
- A carbon tax does the job
- Too much electricity with FIT, FIP or RPS
- Marginal value of storage = cost difference
- Social value of smart meters not always positive because risk

- Environmental policies in a model with intermittent energy (wind power) and constant retailing electricity price
- Aim of environmental policy: reducing electricity consumption and increasing wind power production
- A carbon tax does the job
- ► Too much electricity with FIT, FIP or RPS
- Marginal value of storage = cost difference
- Social value of smart meters not always positive because risk
- Competitive fringe of wind power produce is not enough to get efficiency

- Environmental policies in a model with intermittent energy (wind power) and constant retailing electricity price
- Aim of environmental policy: reducing electricity consumption and increasing wind power production
- A carbon tax does the job
- Too much electricity with FIT, FIP or RPS
- Marginal value of storage = cost difference
- Social value of smart meters not always positive because risk
- Competitive fringe of wind power produce is not enough to get efficiency
- Regulation with state-contingent carbon taxes or price cap and carbon tax