

University of Stuttgart IER Institute of Energy Economics and the Rational Use of Energy

Modelling Employment and Nuclear Power in a CGE Model:

The Example of the German *Energiewende*

CEEM Conference "Effets sur l'emploi des choix dans le secteur électrique"

Université Paris-Dauphine

26 October 2015

Robert Beestermöller

Institute of Energy Economics and the Rational Use of Energy (IER)

University of Stuttgart

ER Institute of Energy Economics and the Rational Use of Energy

Content

- 1. Overview
- **2.** The CGE model NEWAGE
 - Modelling nuclear power
 - Modelling (un)employment
- **3.** Results of selected IER-studies
- 4. Summary and outlook

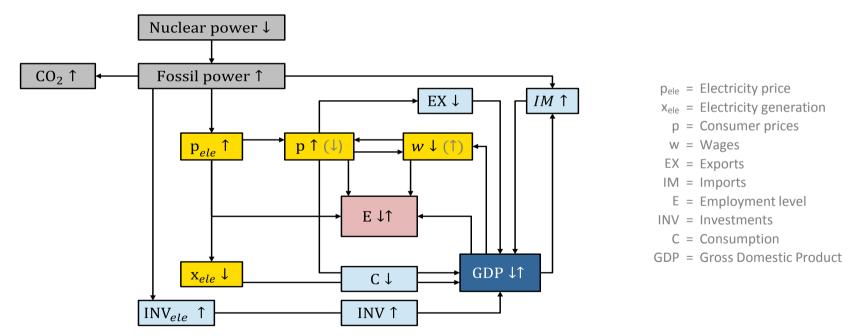
IER Institute of Energy Economics and the Rational Use of Energy

The German Energiewende

- The German *Energiewende* comprises long-run goals and measures in order to
 - ⇒ Reduce GHG emissions
 - ⇒ Promote renewable energies
 - ⇒ Increase energy efficiency
 - ⇒ Phase-out nuclear power until 2021

		2020	2030	2040	2050	
The <i>Energiwende</i> goals	GHG emissions:	-40%	-55%	-70%	-80% to -95%	base year 1990
	Electricity consumption:	-10%	-	-	-25%	base year 2008
	Primary energy consumption:	-20%	-	-	-50%	
	Final energy consumption:	-10%	-	-	-40%	>
	RES-share in gross final energy consumption:	18%	30%	45%	60%	
	RES-share in gross electricity consumption:	35%	50%	65%	80%	
	Number of electric vehicles:	1 M	6 M	-	-	
	EU-wide CO ₂ emissions standards for cars:	95 gCO ₂ /km	-	-	-	
	Primary energy consumption in buildings:	-	-	-	-80%	
	Heat demand in buildings:	-20%		CO ₂ neutral new buildings		
	Buildings renovation rate:		Double from 1 % to 2 % p.a.			

Assessing employment effects with CGE models


- Modelling interactions of economic agents on markets in a closed circle of income
- Economic activities, prices and income as variables
- General equilibrium conditions:
 - Zero profits (firms)
 - Market clearance
 - Budget restriction (households)
- Neoclassical assumptions (perfect competition) can be waved in special markets
 - e.g. labor market ⇒ allowing for unemployment
- Modeling employment effects of energy technology investments
 - Where does the funding come from?
 - What are alternative uses of the funding?
 - No forecasts, but ex-ante assessment of different policy interventions (e.g. *Energiewende*) within a consistent framework

• Gross effects include price effects, supply and demand effects (quantities), investment effects, foreign trade effects, substitution and income effects...:

Possible economic effects of phasing-out nuclear power [Fahl & Ellersdorfer, 2004]

What is the size of the resulting net effect regarding employment levels?

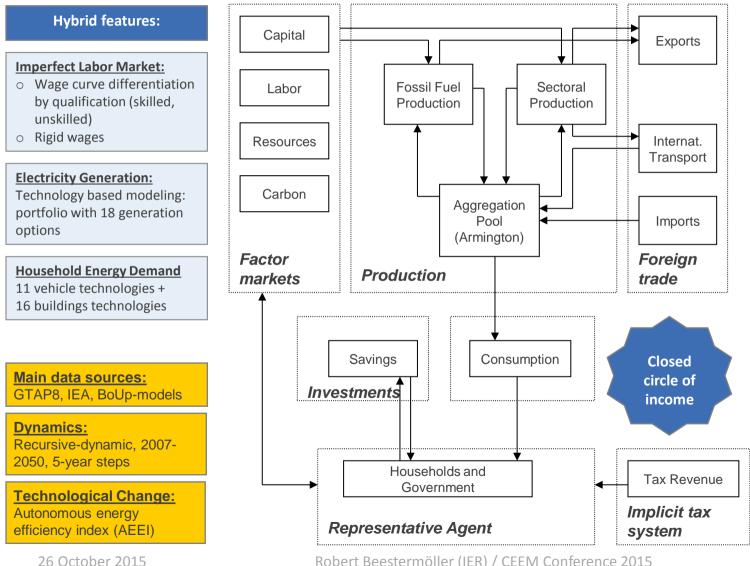
Need for a methodology that covers a closed circle of income

University of Stuttgart

IER Institute of Energy Economics and the Rational Use of Energy

IER Institute of Energy Economics and the Rational Use of Energy

Content


- 1. Overview
- **2.** The CGE model NEWAGE
 - Modelling nuclear power
 - Modelling (un)employment
- 3. Results of selected IER-studies
- 4. Summary and outlook

26 October 2015

IER Institute of Energy Economics and the Rational Use of Energy

NEWAGE: Concept and composition

Robert Beestermöller (IER) / CEEM Conference 2015

Current resolution (18x18x4):

18 sectors:

Coal, Natural gas, Crude oil, Petroleum, Electricity

Iron & Steel, Non-ferrous metals, Non-metallic minerals. Paper. pulp & print, Chemicals, Food & Tobacco.

Motor vehicles, Machinery, Rest of industry,

Buildings, Transport, Agriculture, Services

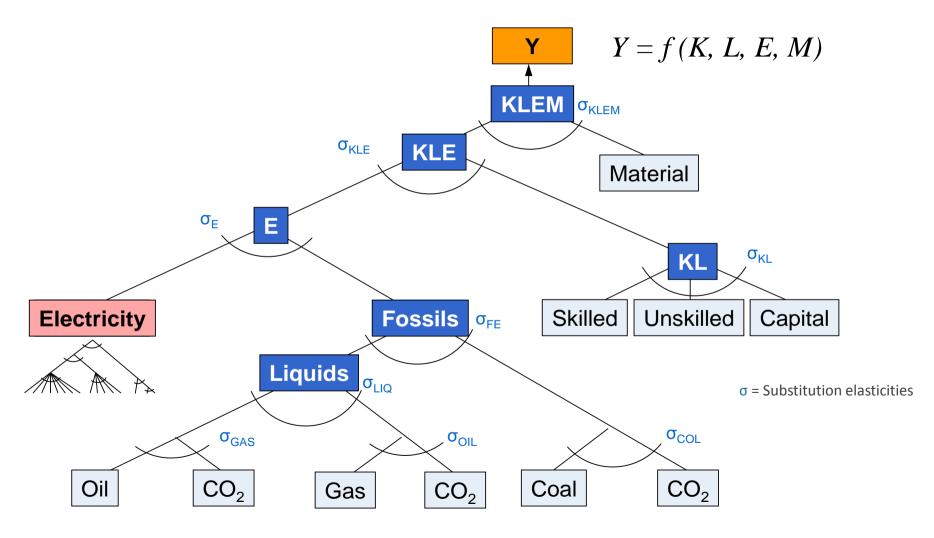
18 regions:

Germany, Baden-Württemberg (separate)

France, Austria, Eastern EU-28, Northern EU-28, Southern EU-28. Switzerland

USA, Rest of OECD

Brazil, Russia, India, China, South Africa


Rest of OPEC. Arabian World. Rest of the World

IER Institute of Energy Economics and the Rational Use of Energy

NEWAGE: CES Production functions

IER Institute of Energy Economics and the Rational Use of Energy

NEWAGE: Modelling electricity generation

- CES nesting of electricity generation technologies
- Each technology is represented as a CES production function demanding KLEM inputs (interdependency with the rest of the economy)
- Electricity generation takes place in extant and new power plants

Base-

Mid-load

 $\sigma_{\rm B}$ (high)

Bio Lignite Coal Gas Oil

Base-load

Nuclear Hydro Geo

ctober 2015

Electricity

 σ_{BM} (moderate)

Mid-load

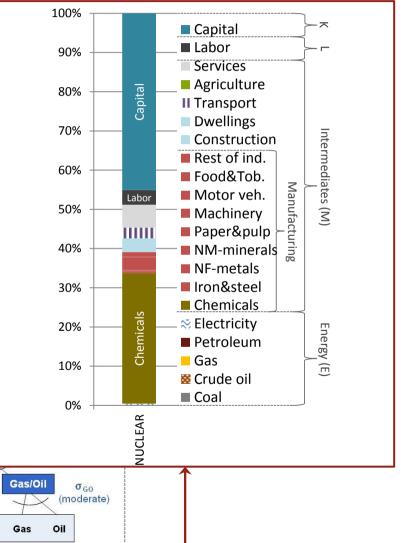
CCS Wind Solar Coal Gas

 σ_{F}

 σ_{ELE} (low)

 σ_{M} (high)

Е


Pe

Pump

storage

Oil CCS

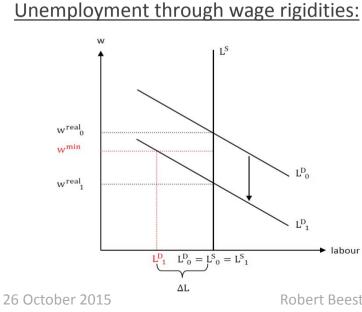
IER Institute of Energy Economics and the Rational Use of Energy

Content

1. Overview

2. The CGE model NEWAGE

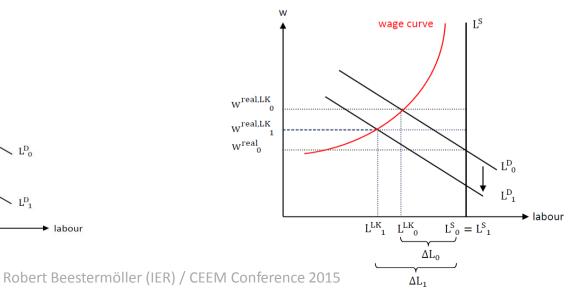
- Modelling nuclear power
- Modelling (un)employment
- 3. Results of selected IER-studies
- 4. Summary and outlook



Modelling (un)employment in NEWAGE

- 2 degrees of labor qualification: skilled and unskilled labor
- Corresponding wage functions:

<u>Unskilled labor</u>: Real wage remains constant (minimum wage)


$$\frac{W_r}{D_r} \ge W_r^{min}$$

Skilled labor: Wage curve following Blanchflower & Oswald (1995) $\ln w^{real} = \beta \ln ur + \infty$

$$\frac{w_r}{P_r} = \frac{\frac{w_r^{BMK}}{P_r^{BMK}}}{ur_r^{BMK^\beta}} ur_r^\beta$$

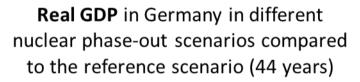
Unemployment related to a wage curve:

IER Institute of Energy Economics and the Rational Use of Energy

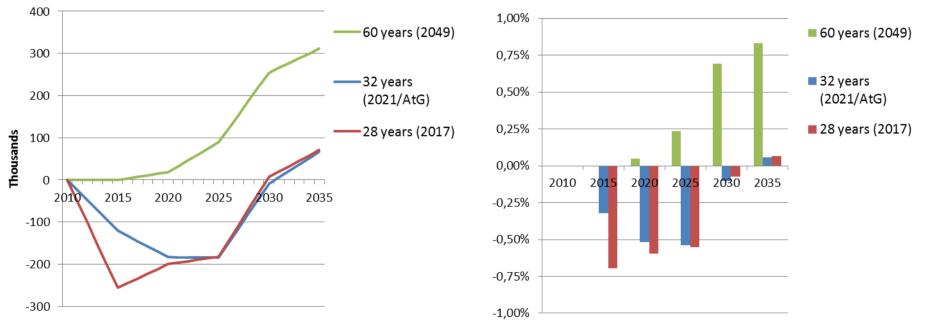
Content

- 1. Overview
- 2. The CGE model NEWAGE
 - Modelling nuclear power
 - Modelling (un)employment
- **3.** Results of selected IER-studies
- 4. Summary and outlook

Selected *IER* studies


- **Küster, R. (2009):** *"Climate protection, macro-economy and employment Analysis of* the German and European climate policy strategies using a CGE model", Dissertation, Mensch und Buch Verlag, Berlin
- **IER/ZEW (2010):** "Energy market developments until 2030 The energy forecast 2009", a Study for the German Federal Ministry for Economic Affairs and Technology (BMWi)
- **IER (2011):** "Effects of changing operational lives of German nuclear power plants scenario analysis until 2035", Institute of Energy Economics and the Rational Use of Energy (IER), University of Stuttgart, Working paper No. 10, June 2011
- **Beestermöller, R. (2012)**, "Net employment effects of renewable energy expansion in Germany", Presentation to the Symposium "EnergieCampus", Stiftung Energie & Klimaschutz Baden-Württemberg, Stuttgart, November 2012
- **Beestermöller, R.,** "Macroeconomic cost-effectiveness of climate policy instruments in *household energy demand*", ongoing PhD project

Macroeconomic effects of changing operational lifetimes of German nuclear power plants (IER, 2011)

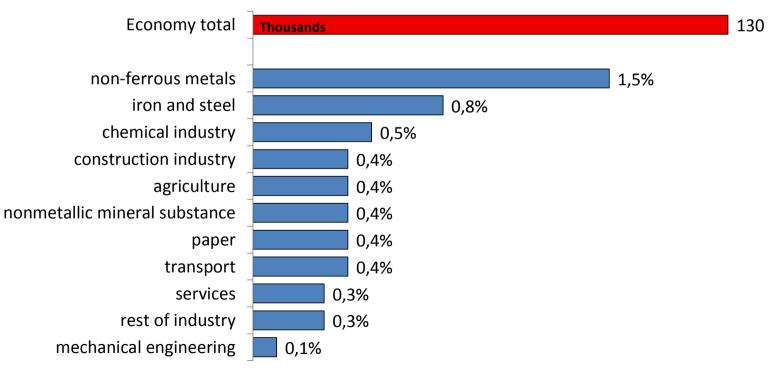

 IER (2011): "Effects of changing operational lifetimes of German nuclear power plants – scenario analysis until 2035" [in German], Institute of Energy Economics and the Rational Use of Energy (IER), University of Stuttgart, Working paper No. 10, June 2011

Employees in Germany in different nuclear phase-out scenarios compared to the reference scenario (44 years)

University of Stuttgart

Institute of Energy Economics and the Rational Use of Energy

Robert Beestermöller (IER) / CEEM Conference 2015



Net employment effects of extending lifetime of nuclear plants from 32 to 40 years in Germany (IER/ZEW, 2010)

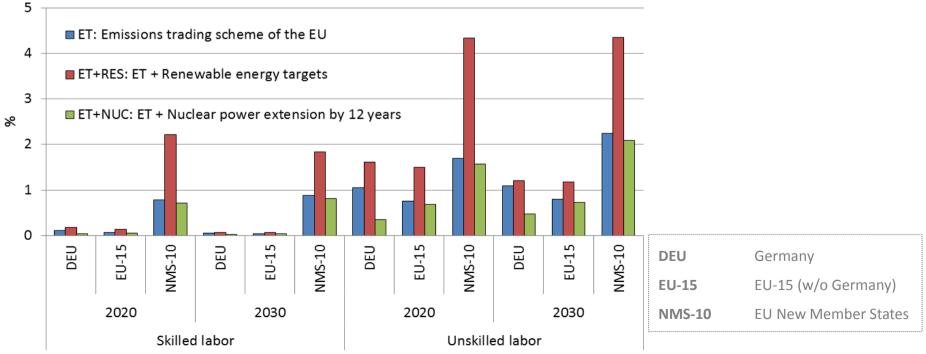
• IER/ZEW (2010): "Energy market developments until 2030 – The energy forecast 2009" [in German], a study for the German Federal Ministry for Economic Affairs and Technology (BMWi)

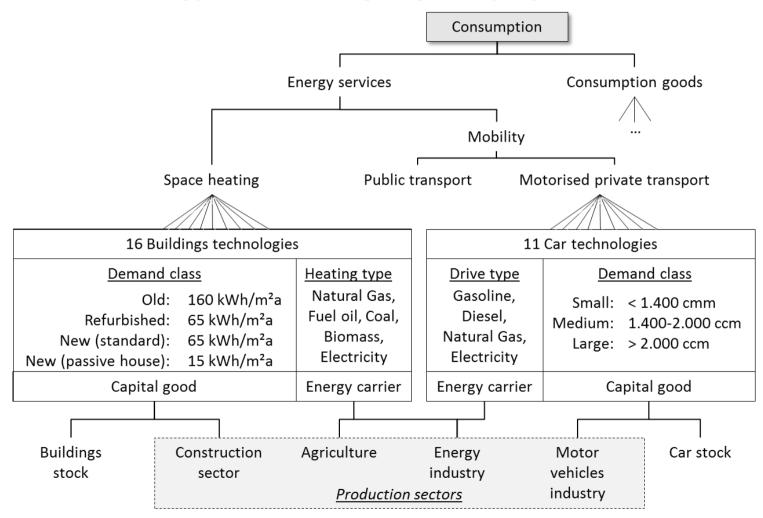

Change of employees in 2020 when extending lifetime of nuclear plants from 32 to 40 years in Germany

Net employment effects of the renewable energy expansion in Germany

 Beestermöller, R. (2012), "Net employment effects of the renewable energy expansion in Germany" [in German], Presentation to the Symposium "EnergieCampus", Stiftung Energie & Klimaschutz Baden-Württemberg, Stuttgart, November 2012

University of Stuttgart


IER Institute of Energy Economics and the Rational Use of Energy


Change of the unemployment rate in the EU under different climate policy regimes (Küster, 2009)

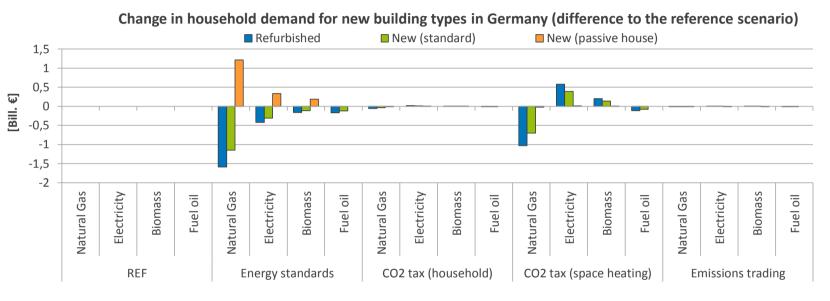
• Küster, R. (2009): "Climate protection, macro-economy and employment – Analysis of the German and European climate policy strategies using a CGE model" [in German], Dissertation, Mensch und Buch Verlag, Berlin

Changes of the unemployment rate in the EU under different climate policy regimes (relative to the base scenario, in %)

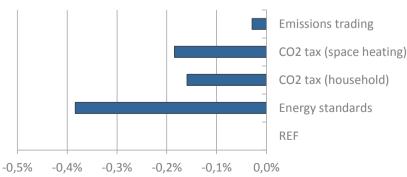
Macroeconomic cost-effectiveness of climate policy instruments in household energy demand (ongoing PhD project)

Robert Beestermöller (IER) / CEEM Conference 2015

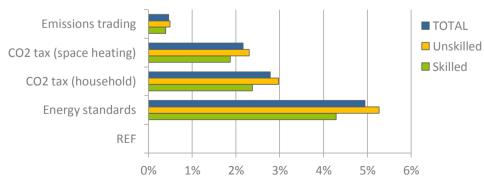
1/2


University of Stuttgart

ER Institute of Energy Economics and the Rational Use of Energy



ER Institute of Energy Economics and the Rational Use of Energy


Macroeconomic cost-effectiveness of climate policy instruments in household energy demand (ongoing PhD project)

GDP change in Germany (relative difference to REF, in %)

Unemployment rate changes in Germany (relative difference to REF, in %)

26 October 2015

Robert Beestermöller (IER) / CEEM Conference 2015

2/2

IER Institute of Energy Economics and the Rational Use of Energy

Content

- 1. Overview
- 2. The CGE model NEWAGE
 - Modelling nuclear power
 - Modelling (un)employment
- 3. Results of selected IER-studies
- 4. Summary and outlook

Summary and outlook

- The CGE model NEWAGE has the following hybrid features:
 - 18 electricity generation technologies
 - 11 vehicle technologies
 - 16 buildings technologies
 - Imperfect labor markets (unemployment)
- The closed-circle-of-income-approach allows to...
 - ... conduct macroeconomic ex-ante comparisons of different policy interventions (e.g. taxes/subsidies, emissions trading) on a global scale
 - ... assess competing investment projects (endogenous financing ⇒ investments = savings)
 - ... account for relative price changes (e.g. wages)
 - ... quantify net effects (e.g. net employment effects)
- Ongoing research projects
 - Competitiveness effects and macroeconomic impacts of carbon leakage options in ETS phase IV
 - Distributional impacts of European energy and climate policies