

CEEM Conference on Elements of a new Target Model for European Electricity Markets

FTR Allocations to Ease Transition to Nodal Pricing: An Application to the German Power System

Friedrich Kunz, Karsten Neuhoff, and Juan Rosellón

Friedrich Kunz Paris, 9 July 2015

Outline

1 Introduction

2

3

4

5

2

- Optimization Models
- FTR Allocation in a Three-Node Network
 - FTR Allocation for the German Power System

Conclusions

- Increasingly accepted that nodal pricing is most efficient way of operating a power system
- Major obstacle: implied distributional impacts from a change from uniform to nodal prices
- Generators in low-price and loads in higher-price zones might lose out with new pricing system
- A successful element of implementation of nodal pricing has been the parallel allocation of FTRs
- *Initial* allocation of FTRs: highly disputed element of market liberalization processes

complicated the initial allocation of FTRs Europe: lack of nodal prices makes unlikely that revenue-

Australia: zonal pricing system developed that has

 New Zealand: nodal prices date back to 1989, FTRs were not immediately implemented

adequacy for FTR allocations is met

- NYISO: early implementation of an FTR market to deal with "grandfather" contracts
- Initial provision of FTRs boils down to sharing the pie among various market participants

4

Introduction

- Introduction
- Develop model to explore how initial free allocation of FTRs (at the time of transition to nodal pricing) is designed
- Three node network: analyze effects of different modalities to allocate FTRs
- Models for uniform pricing, nodal pricing and for optimal allocation of FTRs
- Simplified FTR allocation methods available in practice.
 We compare across them
- Application to the German power market

- Three optimization models developed
- First model: current German electricity market clearing approach with a uniformly priced national spot market, and subsequently congestion management based on curative power plant redispatch
- Second model: follows idea of nodal pricing and combines the economic dispatch of power plants and optimal operation of the physical transmission network

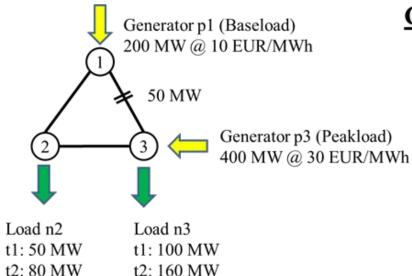
- Models differ in the way congestion in the transmission network is handled
- Uniform pricing model uses curative methods, whereas preventive congestion management is applied in the nodal pricing model
- Third model: deals with allocation of FTRs to market participants based on results of the uniform and nodal pricing market models
- Feasibility and the revenue adequacy of the FTR allocation are checked out

Market Clearing

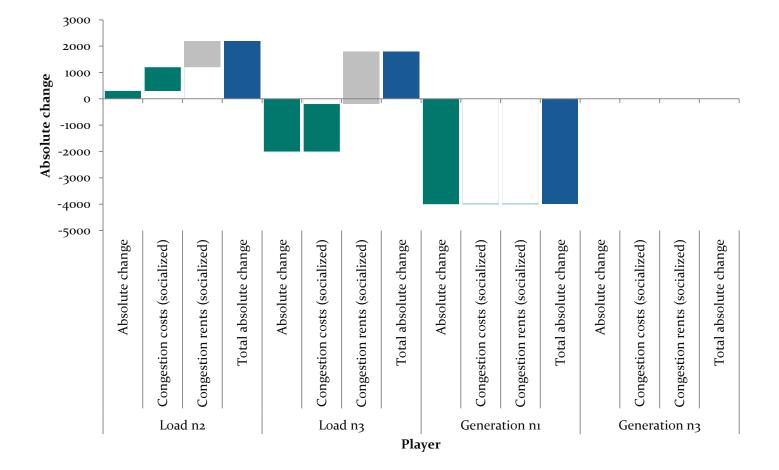
$$\min_{G} \sum_{p,t} mc_p G_{p,t}$$
$$\sum_{n} d_{n,t} - \sum_{p} G_{p,t} - \sum_{n} g_{n,t}^{RES} = 0$$
$$0 \le G_{p,t} \le g_p^{max}$$

 $\Delta_{n',t}=0$

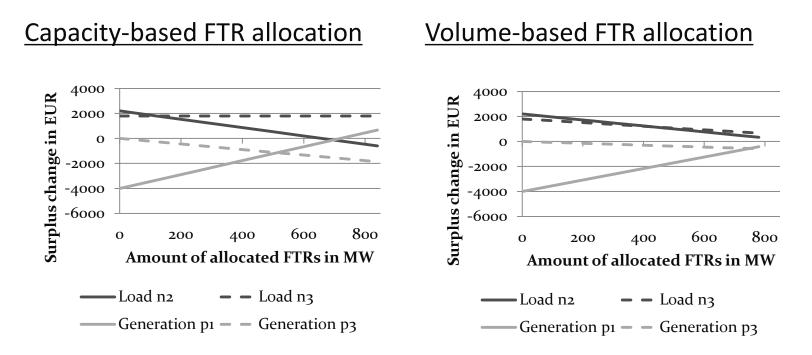
$$\begin{split} \min_{G} \sum_{p,t} mc_{p} G_{p,t} \\ d_{n,t} &- \sum_{p \in A(n)} G_{p,t} - g_{n,t}^{RES} - \sum_{nn} b_{n,nn} \Delta_{n,t} = 0 \\ 0 &\leq G_{p,t} \leq g_{p}^{max} \\ \left| \sum_{l} h_{l,n} \Delta_{n,t} \right| \leq p_{l}^{max} \\ \Delta_{n',t} &= 0 \end{split}$$



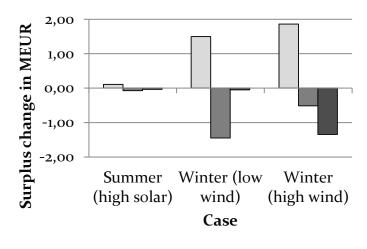
- Two approaches for initial allocation FTRs:
 - First approach allocates FTRs to conventional and renewable generators based on <u>historical production</u>
 - Second approach relies on <u>installed generation capacities</u> to determine the amount of FTRs
- On the demand side, FTRs are allocated relative to consumption given the total amount of FTRs allocated to generation
- For both allocation approaches, we explore different levels or amounts of total FTRs


Characteristics

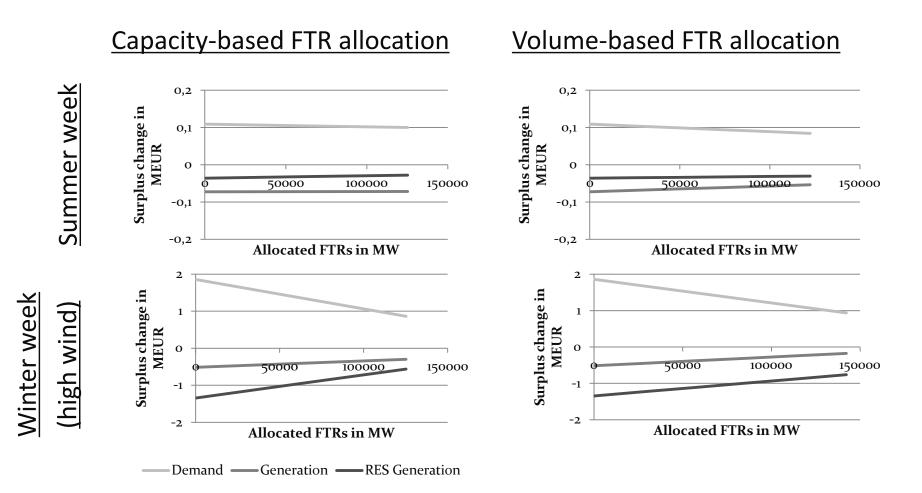
- Time periods: t1, t2
- Generation: p1, p3
- Load: n2, n3
- Equal line characteristics
- Line capacity unlimited except for line n1-n3 = 50 MW


12

FTR Allocation in a Three-Node Network: Surplus Change

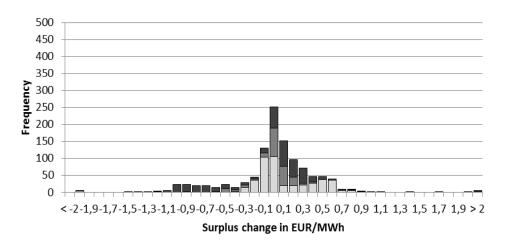


- Both approaches initiate a redistribution of surplus
- Capacity-based approach seems to be less effective as utilization of generation technologies is not taken into account

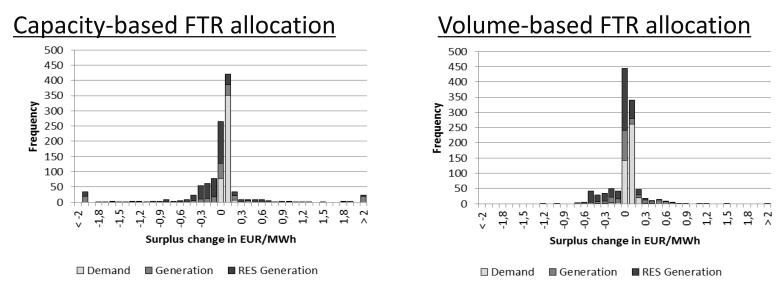

FTR Allocation for the German Power System: Setting

- Detailed representation of the German transmission network, including conventional and renewable generation based Egerer et al. (2014, DIW Data Documentation 72)
- Simulation of three characteristic weeks in 2012
 - Summer week with high solar generation
 - Winter week with low wind generation
 - Winter week with high wind generation

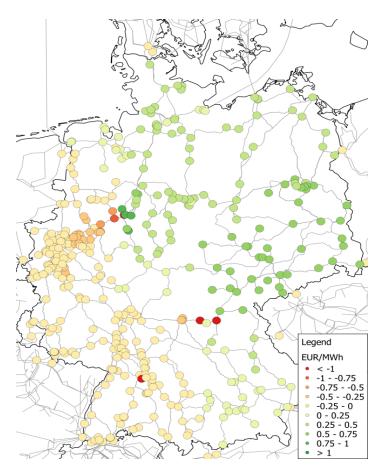
 \Box Demand $\hfill Generation <math display="inline">\hfill RES$ Generation

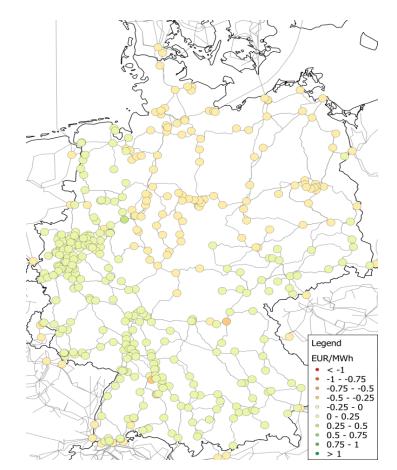

• Volume-based more effective than capacity-based approach

DIW BERLIN



FTR Allocation for the German Power System: Surplus change for winter week with high wind


□ Demand ■ Generation ■ RES Generation



17

No FTR allocation

Full FTR allocation

Conclusions

Major challenge for implementation of nodal pricing is the distributional impact of price changes facing generation and load in different locations of the system

- Implementation of nodal pricing accompanied with free allocation of FTRs to market participants to mitigate distributional effects
- In a three node network allocation in proportion to annual production volume allows to better compensate the distributional impact than allocation in proportion to installed capacity

Further assessment of numerical results

• For intermittent renewables the allocation of FTR obligations can mitigate fewer of the distributional effects

This points to the need of more complex FTR designs

- FTR allocation can mitigate almost all distributional effects for the demand side, and a large share for conventional generation
- Modeling in the German power system with full nodal representation:

19

Conclusions

DIW Berlin — Deutsches Institut für Wirtschaftsforschung e.V. Mohrenstraße 58, 10117 Berlin www.diw.de

fkunz@diw.de