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Renewable Energies as instrument of

environmental sustainability

* Environmental sustainability has been identified as a prioritized societal goal

» Europe has set targets for renewables to make up 20% of the total electricity
generation by the year 2020

* USA planned 26% less greenhouse gas emissisions by the year 2025
(Pre-Trump Era)

e Germany! is planning 35% of renewables by the year 2035 and 65% by the
year 2050
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Challenges of Integrating Renewables

Into the electricity system
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Challenges

* Physical constraints apply as ,Demand = Supply“ for maintaining
network stability

 Demand and Generation do not necessarily match
*High fluctuation in the generation may compromise network stability

PV and wind energy feed-in [GW]
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Demand Response Management
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Demand Response Management
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* Retailers can realize savings from optimizing their electricity procurement

* The integration of demand response into the electricity market is still not well
understood

* .,There is a lack of understanding costs and benefits of demand response”
 Trade-off between ICT deployment and economic benefits are unexplored
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Information Flow

* Demand Response (DR) adoption is driven by the reailer
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* Assumption: Incentive-based DR system
e Consumers communicate their maximal shift duration and power volume to the

retailer
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IS Architecture of the DR System 2
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Model Assumptions
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= Demand Response integrated on a distribution level
- Implicitly impose requirements by power grid

= Consumers own and install devices that can be remotely controlled for load
shifting

= Focus on single electricity retailer (not consumers)
- Aggregated Demand Response potential instead of controlling individual devices
- Change in demand does not affect prices

= Only IT and communication costs (incl. personnel)

= No grid-related costs

= No costs for support, processes and integrating in existing IT infrastructure
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Value of Information

= \We define the value of information for Demand Response as the
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electricity retailer's profit per meter readout
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total annual saving potentials

total annual running costs for DR infrastructure

total number of annual meter readouts for all meters
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Modeling IS Costs: Investments

UNI
FREIBURG

Investment = Procuring and installing components according to
Costs number of smart meters and read-out frequency
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Modeling IS Costs: Operating Costs

Operating
Costs "Cop = Csm'Xsm t Cc Xg ot
Smart meters Concentrator IS

= Costs for maintenance, personnel, energy, ...
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Modeling IS Costs: Comm. Costs
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L = Costs for exchanging control signals
Communication

Costs " ccompr =  PBesy v - cesmW) - 365
GSM meters Data/MB Costs/MB Days p.a.
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Modeling System Costs: Running Costs

Operating Costs

Communication
Costs
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Modeling Saving Potentials

Minimizing retailer’s expenditures

r=_min 3 cp()qp(t) + ca(t)qa(t)

qr(t),qa(t)

Energy purchase according to demand

g-(0) + g1 () = D(E) + Z £DR; (¢, +0)

0« & >0

Linear optimization problem with further constraints
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Simulation Scenario
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143,000 households and 77,000 commercial customers
(corresponds to an annual energy consumption of 1,000 GWh)

220,000 smart meters
- 126,000 communication modules PLC
- 54,000 communication modules GSM (= 20 %)

Hardware costs of smart meter:
- 95 EUR incl. GSM communication module
- 80 EUR incl. PLC communication module

Communication prices GSM: logarithmic function depending on volume

Readout interval of meters: 60 (basis), 30, 15, 10 minutes
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IT-related run costs of smart meter data

Information Value (per 1,000 readouts), in EUR

0.00 0.02 0.04 0.06 0.08 0.10

-0.02

= [V, sginscenario Qgy
= = Wyarinscenario Qyn
=== Nyarinscenario Quax

9

I I I
10 11 12

I I I
13 14 15

UNI
FREIBURG

Evaluation of the cost-value

model across tress scenarios
GSM communication prices
stay constant

GSM communication prices
decrease annually by 5%

GSM communication prices
decrease annually by 15%

If communication costs stay
constant, we obtain a negative
net present value, due to the
Immense roll-out costs
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Information Value (per 1,000 readouts), in EUR

Break-Even Analysis: Share of GSM-

based meters
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Optimal read-out frequency for smart

meter data

Cumulated Financial Result, in mn EUR
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Information-value is positive, if the read-out frequency is the range
between 21 and 57 minutes

Optimal read-out frequency is 41 minutes
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Optimal Roll-out Strategy

How can the retailer maximize his profit by reducing the number of smart

meter deployments?

Share of
HH/CC

Total annual
consumption

Number of
smart meters

NPV

Read-out
interval 15
minutes
Base

100%/100%

1000 GWh

219.781

-22.45M €

Read-out
interval 15
minutes
Restricted

0.66%/25%

209 GWh

20.172

0.98 M€

Read-out
interval 60
minutes
Base

100%/100%

1000 GWh

219.781

-22.37T M €
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Read-out
interval 60
minutes
Restricted

0.98%/32.6%

258 GWh

25.758

0.89 M€

22



UNI
FREIBURG

System Architecture of a Demand Response System

Cost-Value Model
Findings

Conclusion

23



Conclusion & Limitations
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Savings from a DR system significantly exceed its running costs

More granular smart meter data does not necessarily result is
higher profits due to ICT costs

A positive return can be achieved if the read-out occurs every 21-
57 minutes

Restricting the DR system to large-scale consumers may produce
a positive NPV

Consumers participate in the DR system without getting
compensation

Business case of the intermediaries need to be explored in detall
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