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Renewable Energies as instrument of
environmental sustainability
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• Environmental sustainability has been identified as a prioritized societal goal
• Europe has set targets for renewables to make up 20% of the total electricity 
generation by the year 2020

• USA planned 26% less greenhouse gas emissisions by the year 2025 
(Pre-Trump Era) 

• Germany1 is planning 35% of renewables by the year 2035 and 65% by the
year 2050
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Challenges of Integrating Renewables
into the electricity system

Challenges

•Physical constraints apply as „Demand = Supply“ for maintaining
network stability

•Demand and Generation do not necessarily match
•High fluctuation in the generation may compromise network stability

1. EEX Transparency, Daten für 10. Mai 2015
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Demand Response Management

High Fluctuations in Generation leads to highly volatile markets

Peak Clipping Load Shifting

Demand Side 
Management:

Matching Demand 
and Supply in Grid

Problem:
Highly Volatile 

Electricity Prices
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• Retailers can realize savings from optimizing their electricity procurement
• The integration of demand response into the electricity market is still not well
understood

• „There is a lack of understanding costs and benefits of demand response“
• Trade-off between ICT deployment and economic benefits are unexplored

Demand Response Management
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• Demand Response (DR) adoption is driven by the reailer
• Assumption: Incentive-based DR system
• Consumers communicate their maximal shift duration and power volume to the
retailer

Information Flow
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IS Architecture of the DR System
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 Demand Response integrated on a distribution level
- Implicitly impose requirements by power grid

 Consumers own and install devices that can be remotely controlled for load 
shifting

 Focus on single electricity retailer (not consumers) 
- Aggregated Demand Response potential instead of controlling individual devices
- Change in demand does not affect prices

 Only IT and communication costs (incl. personnel) 

 No grid-related costs

 No costs for support, processes and integrating in existing IT infrastructure

Model Assumptions
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 We define the value of information for Demand Response as the 
electricity retailer‘s profit per meter readout
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Value of Information

	

readout interval (in minutes)
total annual saving potentials
total annual running costs for DR infrastructure
total number of annual meter readouts for all meters
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Modeling IS Costs: Investments

 Procuring and installing components according to 
number of smart meters and read-out frequency
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Modeling IS Costs: Operating Costs

 Costs for maintenance, personnel, energy, …
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Smart	meters
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Modeling IS Costs: Comm. Costs



Operating Costs

Communication 
Costs

Investment 
Costs

 Procuring and installing components according to 
number of smart meters and read-out frequency
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Modeling System Costs: Running Costs

Total running costs:

Operating	Costs
,

Control	Signals
	 ,

Meter	Readout



Modeling Saving Potentials

 Minimizing retailer’s expenditures

min
,

 Energy purchase according to demand

	 ,

 Linear optimization problem with further constraints
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Simulation Scenario

 143,000 households and 77,000 commercial customers
(corresponds to an annual energy consumption of 1,000 GWh)

 220,000 smart meters
- 126,000 communication modules PLC
- 54,000 communication modules GSM (= 20 %)

 Hardware costs of smart meter:
- 95 EUR incl. GSM communication module
- 80 EUR incl. PLC communication module

 Communication prices GSM: logarithmic function depending on volume

 Readout interval of meters: 60 (basis), 30, 15, 10 minutes
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IT-related run costs of smart meter data

 Evaluation of the cost-value 
model across tress scenarios
 GSM communication prices

stay constant
 GSM communication prices

decrease annually by 5%
 GSM communication prices

decrease annually by 15%

 If communication costs stay
constant, we obtain a negative 
net present value, due to the
immense roll-out costs
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Break-Even Analysis: Share of GSM-
based meters 

 Sensitivity analysis: Which parameters need to the adjusted in order to 
obtain a profitable solution 
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Smart Meter Read-out Interval, in Minutes
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 Information-value is positive, if the read-out frequency is the range 
between 21 and 57 minutes

 Optimal read-out frequency is 41 minutes



Optimal Roll-out Strategy
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 How can the retailer maximize his profit by reducing the number of smart 
meter deployments?

Read-out
interval 15 
minutes
Base

Read-out
interval 15 
minutes
Restricted

Read-out
interval 60 
minutes
Base

Read-out
interval 60 
minutes
Restricted

Share of
HH/CC

100%/100% 0.66%/25% 100%/100% 0.98%/32.6%

Total annual
consumption

1000 GWh 209 GWh 1000 GWh 258 GWh

Number of
smart meters

219.781 20.172 219.781 25.758

NPV -22.45 M € 0.98 M € -22.37 M € 0.89 M €
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 Savings from a DR system significantly exceed its running costs
 More granular smart meter data does not necessarily result is

higher profits due to ICT costs
 A positive return can be achieved if the read-out occurs every 21-

57 minutes
 Restricting the DR system to large-scale consumers may produce

a positive NPV

 Consumers participate in the DR system without getting
compensation

 Business case of the intermediaries need to be explored in detail
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Conclusion & Limitations


