Value and granularity of ICT and smart meter data in demand response systems

Workshop, Dauphine University Paris 06/05/2017

Albert-Ludwigs-Universität Freiburg

Stefan Feuerriegel, Philipp Bodenbenner, Dirk Neumann

Renewable Energies as instrument of environmental sustainability

- Environmental sustainability has been identified as a prioritized societal goal
- Europe has set targets for renewables to make up 20% of the total electricity generation by the year 2020
- USA planned 26% less greenhouse gas emissisions by the year 2025 (Pre-Trump Era)
- Germany¹ is planning 35% of renewables by the year 2035 and 65% by the year 2050

Challenges of Integrating Renewables into the electricity system

Challenges

- Physical constraints apply as "Demand = Supply" for maintaining network stability
- Demand and Generation do not necessarily match
- High fluctuation in the generation may compromise network stability

PV and wind energy feed-in [GW]

Demand Response Management

High Fluctuations in Generation leads to highly volatile markets

.....

Demand Response Management

- Retailers can realize savings from optimizing their electricity procurement
- The integration of demand response into the electricity market is still not well understood
- "There is a lack of understanding costs and benefits of demand response"
- Trade-off between ICT deployment and economic benefits are unexplored

Agenda

- **1** System Architecture of a Demand Response System
- 2 Cost-Value Model
- ³ Findings
- 4 Conclusion

Information Flow

- Demand Response (DR) adoption is driven by the reailer
- Assumption: Incentive-based DR system
- Consumers communicate their maximal shift duration and power volume to the retailer

IS Architecture of the DR System

BURG

Agenda

- **1** System Architecture of a Demand Response System
- 2 Cost-Value Model
- ³ Findings
- 4 Conclusion

Model Assumptions

- Demand Response integrated on a distribution level
 - Implicitly impose requirements by power grid
- Consumers own and install devices that can be remotely controlled for load shifting
- Focus on single electricity retailer (not consumers)
 - Aggregated Demand Response potential instead of controlling individual devices
 - Change in demand does not affect prices
- Only IT and communication costs (incl. personnel)
- No grid-related costs
- No costs for support, processes and integrating in existing IT infrastructure

Value of Information

 We define the value of information for Demand Response as the electricity retailer's profit per meter readout

$$IV(f) = \frac{r-c}{T}$$

f	readout interval (in minutes)
r	total annual saving potentials
С	total annual running costs for DR infrastructure
Т	total number of annual meter readouts for all meters

URG

Ĩ

FR.

Modeling IS Costs: Investments

Investment	 Procuring and installing components according to		
Costs	number of smart meters and read-out frequency		
Operating Costs	• Costs for maintenance, personnel, energy, • $c_{OP} = c_{SM} \cdot x_{SM} + c_C \cdot x_C + c_{IS}$ Smart meters Concentrator IS		
Communication	• Costs for exchanging control signals		
Costs	• $c_{COM,DR} = \beta_{GSM} \cdot \underbrace{v}_{GSM} \cdot \underbrace{c_{GSM}(v)}_{GSM} \cdot \underbrace{365}_{GSM meters}$ Data/MB Costs/MB Days p.a.		

FREIBURG

Modeling IS Costs: Operating Costs

Investment	 Procuring and installing components according to
Costs	number of smart meters and read-out frequency
Operating	• Costs for maintenance, personnel, energy,
Costs	• $c_{OP} = \underbrace{c_{SM} \cdot x_{SM}}_{\text{Smart meters}} + \underbrace{c_C \cdot x_C}_{\text{Concentrator}} + \underbrace{c_{IS}}_{\text{IS}}$
Communication Costs	Costs for exchanging control signals $c_{COM,DR} = \beta_{GSM} \cdot \nu \cdot c_{GSM}(\nu) \cdot 365$ GSM meters Data/MB Costs/MB Days p.a.

FREIBURG

Modeling IS Costs: Comm. Costs

Investment	Procuring and installing components according to
Costs	number of smart meters and read-out frequency
Operating	• Costs for maintenance, personnel, energy,
Costs	• $c_{OP} = \underbrace{c_{SM} \cdot x_{SM}}_{\text{Smart meters}} + \underbrace{c_C \cdot x_C}_{\text{Concentrator}} + \underbrace{c_{IS}}_{\text{IS}}$
Communication	• Costs for exchanging control signals
Costs	• $c_{COM,DR} = \underbrace{\beta_{GSM}}_{GSM meters} \cdot \underbrace{v}_{Data/MB} \cdot \underbrace{c_{GSM}(v)}_{Costs/MB} \cdot \underbrace{365}_{Days p.a.}$

FREIBURG

Modeling Saving Potentials

Minimizing retailer's expenditures

$$r = \min_{q_F(t), q_A(t)} \sum c_F(t) q_F(t) + c_A(t) q_A(t)$$

Energy purchase according to demand

$$q_F(t) + q_A(t) = D(t) + \sum \pm DR_j(t, \pm i)$$

Linear optimization problem with further constraints

Agenda

- **1** System Architecture of a Demand Response System
- 2 Cost-Value Model
- ³ Findings
- 4 Conclusion

Simulation Scenario

- 143,000 households and 77,000 commercial customers (corresponds to an annual energy consumption of 1,000 GWh)
- 220,000 smart meters
 - 126,000 communication modules PLC
 - 54,000 communication modules GSM (= 20 %)
- Hardware costs of smart meter:
 - 95 EUR incl. GSM communication module
 - 80 EUR incl. PLC communication module
- Communication prices GSM: logarithmic function depending on volume
- Readout interval of meters: 60 (basis), 30, 15, 10 minutes

IT-related run costs of smart meter data

- Evaluation of the cost-value model across tress scenarios
 - GSM communication prices stay constant
 - GSM communication prices decrease annually by 5%
 - GSM communication prices decrease annually by 15%
- If communication costs stay constant, we obtain a negative net present value, due to the immense roll-out costs

Break-Even Analysis: Share of GSMbased meters

 Sensitivity analysis: Which parameters need to the adjusted in order to obtain a profitable solution

.....

SE

Optimal read-out frequency for smart meter data

- Information-value is positive, if the read-out frequency is the range between 21 and 57 minutes
- Optimal read-out frequency is 41 minutes

Optimal Roll-out Strategy

How can the retailer maximize his profit by reducing the number of smart meter deployments?

	Read-out interval 15 minutes Base	Read-out interval 15 minutes Restricted	Read-out interval 60 minutes Base	Read-out interval 60 minutes Restricted
Share of HH/CC	100%/100%	0.66%/25%	100%/100%	0.98%/32.6%
Total annual consumption	1000 GWh	209 GWh	1000 GWh	258 GWh
Number of smart meters	219.781	20.172	219.781	25.758
NPV	-22.45 M €	0.98 M €	-22.37 M €	0.89 M €

R

Agenda

- **1** System Architecture of a Demand Response System
- 2 Cost-Value Model
- ³ Findings
- 4 Conclusion

Conclusion & Limitations

- Savings from a DR system significantly exceed its running costs
- More granular smart meter data does not necessarily result is higher profits due to ICT costs
- A positive return can be achieved if the read-out occurs every 21-57 minutes
- Restricting the DR system to large-scale consumers may produce a positive NPV
- Consumers participate in the DR system without getting compensation
- Business case of the intermediaries need to be explored in detail