

# Flow-based market coupling with integrated redispatch

Michael Bucksteeg

20<sup>th</sup> November 2019, Chaire European Electricity Markets (CEEM) at the Université Paris-Dauphine, PARIS

UNIVERSITÄT DUISBURG ESSEN

**Open-**Minded

## Background

Coupling of National Power Markets in Europe

- Zonal Market Coupling
  - Integration of national electricity markets on the basis of a zonal pricing approach
  - Shift from bilateral ATC-based to Load Flowbased Market Coupling in CWE in 2015 (CWE FBMC)
- Key issue: commercial exchanges are considered to be too low
  - Change to nodal pricing or bidding zone reconfiguration seem politically not feasible
  - Legislation aims at increasing exchange capabilities by enforcing minimum margins ("minimum RAM") on critical network elements
- > However, are there any alternatives to this?



UNIVERSITÄT

DUISBURG

**Open-**Minded



## Motivation

- What are we seeking to achieve?
  - Commercial exchanges are determined by the capacity domain spanned by limiting critical network elements (see 1.)
  - Increasing commercial exchanges requires the relief of congested critical network elements (see 2.)
- Idea: incorporate redispatch into the market clearing algorithm to increase commercial exchanges (when efficient)







| Background & Motivation                     | 1 |
|---------------------------------------------|---|
| Capacity Calculation and Allocation Process | 2 |
| Methodology                                 | 3 |
| Preliminary Results                         | 4 |
| Conclusion                                  | 5 |



# **Capacity Calculation and Allocation Process I**

D\_UISBURG ESSEN

UNIVERSITÄT

### As implemented today

- Capacity Calculation
  - Translation of physical transmission constraints into commercial transaction constraints
  - Capacity domain is optimised using non-costly remedial actions, e.g. topological measures
- Capacity Allocation
  - Determination of commercial exchanges and market prices
- Grid Operation
  - Corrective measures to guarantee feasibility of physical exchanges resulting from zonal market clearing
  - Also costly remedial actions, i.e. redispatch, to relieve potential grid congestion





# **Capacity Calculation and Allocation Process II**

UNIVERSITÄT DUISBURG

**Open-**Minded

### Integration of Redispatch

- Different options available, e.g.
  - Redispatch markets
  - Integration of nodal constraints —
  - Consideration of redispatch potential \_\_\_\_
- Redispatch potential
  - Outcome of continuous operational planning processes of TSOs
  - Sensitivities of potential redispatch measures on critical network elements could be determined within the capacity calculation process
- Capacity Allocation
  - Incorporation of redispatch potential and corresponding sensitivities on critical network elements, but no activation of redispatch







| Background & Motivation                     | 1 |
|---------------------------------------------|---|
| Capacity Calculation and Allocation Process | 2 |
| Methodology                                 | 3 |
| Preliminary Results                         | 4 |
| Conclusion                                  | 5 |



# Methodology

UNIVERSITÄT DUISBURG ESSEN Open-Minded

Zonal Flow-Based Market Coupling and Integration of Redispatch



# Objective: Minimisation of variable generation cost

- Subject to constraints:
- Generation capacities
- System balance
- ...

# Integration of redispatch potential

Further constraints:

- Balanced redispatch amounts
- $RD_{u,i}^-$  as negative and  $RD_{u,i}^+$  as positive variable



$$\begin{aligned} ram^{NSFD} &\leq \sum_{z \in Z} ptdf_z \cdot NEX_z + \sum_{i \in I} \sum_{u \in U^{RD-}} ptdf_i \cdot RD_{u,i}^- \\ &+ \sum_{i \in I} \sum_{u \in U^{RD+}} ptdf_i \cdot RD_{u,i}^+ \leq ram^{SFD} \end{aligned}$$

# Methodology

- Sensitivities of potential redispatch measures
  - *ptdf<sub>i</sub>* represents the nodal sensitivity of generation units available for redispatch and connected to node *i*
  - Translation of utilized redispatch potential into a reduced flow on binding critical network elements
- Available redispatch units
  - Availability according to dispatch of case "2. Zonal FBMC"
  - $RD_u^- = -gen_{u,zonal}$ ;  $RD_u^+ = p_u^{max} gen_{u,zonal}$
- Considered redispatch potential
  - If  $ptdf_i \leq q_{0.01}$  or  $ptdf_i \geq q_{0.99}$  (for the respective redispatch unit)









| Background & Motivation                     | 1 |
|---------------------------------------------|---|
| Capacity Calculation and Allocation Process | 2 |
| Methodology                                 | 3 |
| Preliminary Results                         | 4 |
| Conclusion                                  | 5 |



## **Preliminary Results**

- Time horizon: 2020 (selected snapshot)
- Geographical scope: Central Western Europe + Switzerland
- Three cases:
  - 1. Nodal pricing (reference case)
  - 2. Zonal FBMC
  - 3. Zonal FBMC with integrated RDpot (redispatch potential)
- Redispatch stage
  - Minimization of redispatch amount through penalties to account for startup-costs and inefficiencies ( $RD^+$ : +30%;  $RD^-$ : -20%)
- Redispatch potential
  - Available generation units with a high sensitivity on critical network elements
  - Available redispatch potential amounts to  $RD^+$ : 2853 *MW*,  $RD^-$ : -5517 *MW*



UNIVERSITÄT

D\_U\_I\_S\_B\_U\_R\_G

**Open-**Minded



### **Preliminary Results**

### Snapshot: 4 pm, 11th February 2020

- Impact on electricity prices and exchanges
  - Prices converge: decrease in NL and BE, increase in DE
  - Net exports from DE are increased by 1.7 GW
  - Imports to BE and NL are increased by 2.1 GW, while FR imports less



#### Comparison of Electricity Prices

#### Comparison of Net Exchanges (NEX)

UNIVERSITÄT

DUISBURG

**Open-**Minded



### Impact on costs and redispatch amount

|       |                      | Nodal<br>Pricing | Zonal<br>FBMC | Integrated<br>RDpot |
|-------|----------------------|------------------|---------------|---------------------|
| [M€]  | Total Cost           | 2,245            | 2,339         | 2,352               |
|       | Market Clearing Cost | 2,245            | 2,163         | 2,119               |
|       | Redispatch Cost      | -                | 0,176         | 0,233               |
| [MWh] | Redispatch Potential | -                | -             | 586                 |
|       | Redispatch Energy    | -                | 2097          | 2494                |



## Extension to zonal FBMC with 70% minRAM

### Snapshot: 4 pm, 11th February 2020

House of Energy Markets

- Impact on electricity prices and exchanges
  - Price convergence higher under minRAM
  - Comparable impact on net exports
  - But, zonal FBMC with minRAM less efficient than with integrated redispatch potential



#### **Comparison of Electricity Prices**



UNIVERSITÄT

D\_U\_I\_S\_B\_U R G

**Open-**Minded



2. Zonal FBMC 2a. Zonal minRAM(0.7) 3. Integrated RDpot

### Impact on costs and redispatch amount

|       |                      | Zonal<br>FBMC | Zonal<br>minRAM | Integrated<br>RDpot |
|-------|----------------------|---------------|-----------------|---------------------|
| [M€]  | Total Cost           | 2,339         | 2,395           | 2,352               |
|       | Market Clearing Cost | 2,163         | 2,147           | 2,119               |
|       | Redispatch Cost      | 0,176         | 0,249           | 0,233               |
| [MWh] | Redispatch Potential | -             | -               | 586                 |
|       | Redispatch Energy    | 2097          | 2534            | 2494                |



| Background & Motivation                     | 1 |
|---------------------------------------------|---|
| Capacity Calculation and Allocation Process | 2 |
| Methodology                                 | 3 |
| Preliminary Results                         | 4 |
| Conclusion                                  | 5 |





• Key issue: commercial cross-border transaction constraints and exchanges are considered to be too low

UNIVERSITÄT

D\_U\_I\_S\_B\_U\_R\_G

**Open-**Minded

- Idea: incorporate redispatch potential into the market clearing algorithm to increase commercial exchanges (when efficient)
- Preliminary results:
  - Integration of redispatch potential can increase cross-border exchanges and align zonal electricity prices (price convergence), but is associated with higher total cost
  - For zonal FBMC with minRAM there is a trade-off between efficiency and higher cross-border exchanges

### > Next steps:

- Extend analysis to a full year
- Compute sensitivities regarding redispatch potential and penalties





# Thank you for your attention!

### **Michael Bucksteeg**

House of Energy Markets and Finance University of Duisburg-Essen Weststadttürme | Berliner Platz 6-8 | 45127 Essen | Germany Email: <u>Michael.Bucksteeg@uni-due.de</u> LinkedIn: <u>https://www.linkedin.com/in/michael-bucksteeg</u>



- ACER, CEER (2018). "Annual Report on the Results of Monitoring the Internal Electricity and Natural Gas Markets in 2017 – Electricity Wholesale Markets Volume"
- European Network of Transmission System Operators for Electricity (Entso-E) (2018). "Transparency Platform," available at: <u>https://transparency.entsoe.eu/</u>
- Felten, B., Felling, T., Voswinkel, S., Weber, C. (2019). "Flow-Based Market Coupling The Effects of Using Heuristics, Lack of Cooperation and Process-Induced Uncertainties " - unpublished working paper

Joint Allocation Office (JAO) (2018). "Utility Tool," available at: http://utilitytool.casc.eu/Util

- Voswinkel, S.; Felten, B.; Felling, T.; Weber, C. (2018). "Flow-Based Market Coupling The Effects of Using Heuristics, Lack of Cooperation and Process-Induced Uncertainties", 7th International Ruhr Energy Conference, 25.09.2018, Essen.
- Voswinkel, S.; Felten, B.; Felling, T.; Weber, C. (2019). "Flow-Based Market Coupling What influences welfare?", Energy Market Developments and Implications for Portfolio Management, E-world energy & water, 06.02.2019, Essen.

