Séminaire PSL de recherches en économie de l'énergie 9 mai 2016

Adapting the US Residential Sector to Global Warming

Francois Cohen^a, Matthieu Glachant^b and Magnus Söderberg^c

a: London School of Economics and Political Science, UK. b: MINES ParisTech, France. c: University of Gothenburg, Sweden

Motivation

- Over the next decades, climate will change with certainty
 - At best, limited to a 2°C increase relative to pre-industrial levels
- But the cost is uncertain, in particular, because the adaptation potential is difficult to predict
- Different adaptation strategies have different costs and impacts
 - Dikes to protect from sea level rise
 - Changes in crop-management practices in agriculture
 - Installation of insulation of housing to protect from heat
 - Their evaluation is crucial to devise efficient policy solutions
- In this paper, adaptation of the US residential sector
 - Existing dwellings

The impact of climate change on existing dwellings

Questions

- What is the economic cost of adapting existing homes to temperature increases?
 - Home renovation costs + energy expenditures
- What is the impact of temperature increases on residential energy use?
 - Accounting for adaptation/investment

What we do

- Use dwelling-level data on home improvements and energy consumption (American Housing Survey, 1985-2011)
 - 58,529 observations from 126 Metropolitan Statistical Areas
- A two-stage panel data analysis to identify the impact of location-specific temperature variations on 1) investment; 2) energy expenditures
- Simulations of the IPCC "business-as-usal" A2 scenario
 - Combine our econometric estimates with the output of the ECHAM general circulation model (a 3.4°C increase in 2090-2099 relative to 1980-1999) to predict adaptation costx and energy expenditures by the end of the century

Preview of the findings

- The present discounted value of the cost for adapting homes to the "business-as-usual" scenario is \$7,200 per housing unit, but this value is not statistically different from zero.
 - Around 3.4% of the average purchase price of the housing units
 - 0.5% of the sample average annual household income if translated into annual expenditures.
- This number hides important disparities between hot regions where households would invest massively in air conditioning and cold regions which would benefit from milder winters.
- Relatedly, a major shift from gas to electricity
 - Residential electricity consumption would increase by 34% (mostly, in hotter States)
 - Residential gas consumption would fall by 17% nationwide (mostly in colder States).
 - In total, energy expenditures would increase by 14%.

How are economic damages of climate change estimated in the literature?

Two approaches (Tol, 2009)

- The enumerative method
 - Estimates of the "physical effects" of climate change obtained one by one from natural science papers
 - The physical impacts are then each be given a price
 - Ex: Agricultural models give the impact of temperature on wheat yield. Yields losses are valued at the wheat market price
- The statistical (or econometric) method
 - Direct estimates of the economic impacts, using observed variations in prices and expenditures to discern the effect of climate
 - Ex: To correlate farmers' income with temperature variations

The new climate - economy literature (Dell et al 2014, JEL)

- Panel data methods which exploit weather shocks within a given spatial area to identify impact of climate change on various economic outcomes
 - Per capita income, growth, agriculture, labor, industrial outputs, health and mortality, political stability, energy consumption, crime
- These works hardly look at adaptation
 - Assess the short term impact of weather shocks leaving no time to economic agents to adapt
- Only two papers on the residential sector
 - Deschênes and Greenstone (2011) and Auffhammer and
 Aroonruengsawat (2011, 2012) on residential energy consumption
 - Holding fixed the stock of energy-related durables

Data sources

American Housing Survey:

- Covering about 160 Metropolitan Statistical Areas (MSA) all over the US
- 14 survey waves with same panel: 1985-2011
- Describe home improvements, in particular, the purchase of major equipment and weatherization, and energy use

Global Historical Climatology Network Daily:

- Match all currently and formerly operating stations within a 50km radius of the centroid of each MSA
- Construct climate averages from 22,000 stations

ECHAM model:

- An atmospheric general circulation model developed at the Max
 Planck Institute for Meteorology
- State-level monthly average temperature predictions drawn from the 5th version

Summary statistics

Variable	Unit	Mean	Std. deviation
Investments in equipment			
Capitalized investments	\$	10,201	7,641
Respondents declaring an investment	%	7.4	-
Expenditure if an investment is made	\$	3,978	2,891
Investments in weatherization			
Capitalized investments	\$	54,534	40,732
Respondents declaring an investment	%	16.6	-
Expenditure if an investment is made	\$	4,817	4,904
Investments in other indoor amenities			
Capitalized investments	\$	104,368	77,114
Respondents declaring an investment	%	29.1	
Expenditure if an investment is made	\$	6,730	10,101
Energy expenditure and consumption			
Annual electricity expenditure	\$	1,379	819
Annual gas expenditure	\$	742	723
Annual electricity consumption	MM.btu/year	36.7	23.0
Annual gas consumption	MM.btu/year	64.8	63.0
Other relevant variables			
Number of people in household	#	2.82	1.52
Housing units connected to pipe gas	%	79.1	-
Commuting time	min.	22	16
Square footage of unit	sq. ft.	2,189	1,267
House price at time of purchase	\$	211,310	174,966

1) Investment

- Two investment categories:
 - 1. purchase of large equipment (e.g. air conditioners, heaters)
 - 2. insulation (e.g. roofing, siding, window replacements)
- The dependent variable is I_{iht} , the volume of investment made in year t in home i in category h:

$$I_{iht} = \alpha_h C_{it} + \beta_h X_{it} + \mu_{ih} + \tau_{ht} + \varepsilon_{iht}$$

With

- C_{it} = a vector of climate variables
- X_{it} = household size, access to energy
- μ_{ih} = by-home-by-category fixed effects
- τ_{ht} = time dummies
- $\varepsilon_{iht} = a \text{ random noise}$

The climate variables

- Annual heating degree days = sum of degrees below 65°F based on average daily temperatures (65°F = 18.3°C)
 - Used by engineers to compute heating needs;
- Annual cooling degree days = sum of degrees above 65°F
- # days with precipitation
- Not the contemporaneous value, but a weighted average of past values
 - Households are aware that the climate varies over time
- Robustness checks with temperature bins and contemporaneous values

Main results: Investment

Type of investment	<u>Equipment</u>	Weatherization
Expected heating degree days	0.161**	0.322**
	(2.23)	(2.08)
Expected cooling degree days	0.354***	0.297
	(2.69)	(1.13)
Expected precipitations	-0.00399	0.0141
	(-0.39)	(0.58)
No. people in unit	-4.347	41.11*
	(-0.42)	(1.70)
Connection to pipe gas	89.83	138.1
	(1.55)	(1.43)
Observations	44,975	42,900

Energy expenditures

- The dependent variable is $ln(E_{ift})$: the logarithm of the annual consumption in home I of fuel f in year t
- Two equations for gas and electricity:

$$\ln(E_{ift}) = \gamma_f \ln(E_{ift-1}) + \theta_f w_{it} + \sum_{h=1}^{3} \phi_{hf} K_{iht} + \omega_f Y_{it} + \mu_{if} + \tau_{ft} + \epsilon_{ift}$$

with

- $w_{it} = a$ vector of **weather** variables
- K_{iht} = the stock of past investments defined by $K_t = I_t + \rho K_{t-1}$ where ρ is a depreciation factor measuring the decay of past investments.
- Y_{it} = household size, access to energy
- μ_{if} = by-home-by-fuel fixed effects
- τ_{ft} = time dummies
- $\epsilon_{ift} = a \text{ random noise}$

Econometric issues

- Dynamic panel data model (Blundell-Bond estimator)
 - Energy use driven by persisting consumption patterns
- Lagged energy use instrumented with the time spent in the house
- Investment stocks instrumented with lagged values

Main results: energy expenditures

Type of fuel		Electricity		Gas	
		(1)	(2)	(3)	(4)
Lagged dependent		0.402***	0.411***	0.449***	0.410***
variable (log)		(3.86)	(4.08)	(3.25)	(3.05)
Heating degree days		0.00988***	0.00605**	0.0737***	0.0781***
		(2.94)	(2.06)	(3.94)	(4.35)
Cooling degree days		0.108***	0.0849***	0.0192**	0.0258**
		(5.16)	(5.29)	(2.03)	(2.32)
Capital in equipment		0.00411*	-0.00268	0.00941***	-0.00285
		(1.82)	(-1.03)	(3.31)	(-0.44)
	x heating fuel is electricity		0.00513***		
			(2.77)		
	x AC fuel is electricity		0.00732***		
			(4.02)		
	x heating fuel is gas				0.0143**
					(2.02)
	x AC fuel is gas				0.00173
					(0.36)
Capital in weatherization	2	0.00000	0.000070	0.004.00***	0.004.00***

Simulations of the A2 scenario for the end of the century (2080-2099)

A2 is a business-as-usual scenario leading to a global average surface warming of 6.1°F in 2090-2099 relative to 1980-1999 More specifically, an increase in # very hot days

Figure 2: Observed and forecasted number of days falling within each temperature bin

Results, nationwide

Estimated impact of the A2 scenario (2080-2099) on annual investments and energy expenditure for a representative US housing unit

	Sample	Baseline long	Variation		
	average	term	In level		In percent
	1985-2011	prediction [†]	Mean	95% confidence interval	
Annual investment in equipment	\$147		+ \$121	[- \$50, + \$293]	+82%
• For heating			- \$113**	[- \$213, - \$14]	-
• For cooling			+ \$235***	[+ \$92, + \$377]	-
Annual investment in weatherization	\$417		- \$30	[- \$380, + \$320]	-7%
Annual electricity bill	\$1,378	\$1,617	+ \$558***	[+ \$272; + \$953]	+34%
Annual gas bill	\$742	\$892	- \$209***	[- \$366; - \$73]	-23%
Total annual energy expenditures	\$2,120	\$2,509	+ \$349*	[-\$38; +\$822]	+14%
Present discounted adaptation cost †		-	+ \$7,213	[- \$1,332; + \$16,918]	-

Results, by region

Estimated impact of the A2 scenario (2080-2099) on for a representative US housing unit in different US regions

US Climate Region		Investments		Energy bills			
(as defined by NOAA)	Heating	Cooling	Weatherizati on	Electricity	Gas	Total energy	Present discounted cost of adaptation
Central	-144**	+173***	-144	+300***	-351***	-51	-2,794
East North Central	-158**	+149***	-192	+234***	-354***	-120	-5,350
Northeast	-156**	+174***	-166	+313***	-296***	+17	-2,213
Northwest	-146**	+86***	-222*	+73	-229***	-156	-7,322***
West North Central [†]	-135**	+182***	-118	+343***	-353***	-9	-1,301
South	-68**	+355***	+161	+1,149***	-89	+1,060***	+25,029***
West	-81**	+267***	+61	+540***	-104**	+436***	+11,406***
Southeast	-49**	+325***	+175	+1031***	-63**	+969***	+23,536***
Southwest	-107**	+296***	+35	+891***	-130***	+767***	+16,633***

Conclusion

- In average, the US residential sector seems resilient to predicted temperature shocks
 - But huge disparities between States
- But climate change will have a very strong impact on residential energy consumption
 - Less gas (in colder States)
 - Much more electricity (in hotter States)

Limitations

- The scope of adaptation covered in the study is limited
 - No construction of new buildings
 - No innovation in adaptation technologies
 - No institutional adjustments (urban planning)
- A partial view of climate change impacts on the residential sector
 - Do not evaluate the impact of floods or hurricanes
- Do not account for uncertainties pertaining to the climate model

Thanks!