The impact of energy prices on energy efficiency: Evidence from the UK refrigerator market

François Cohen*, Matthieu Glachant** and Magnus Söderberg** * GRI, LSE, **CERNA, MINES ParisTech

- A popular concept in policy circles
 - Potentially large differences between the socially and the actual level of energy consumption
- Two reasons
 - The standard externality problem: energy production and use generate health and environmental damages (in particular, fossil fuels)
 - The potential existence of investment inefficiencies: imperfect information and other cognitive constraints may lead consumers to discard privately profitable investments in energy efficiency

- Any investment in energy efficiency entails
 - An upfront cost (a more expensive fridge)
 - A stream of future benefits (energy savings)
- Investment is inefficient if consumers use too high a discount rate
 - Consumers are « myopic »
- They buy too cheap refrigerators with a too low level of energy performance
- A rather old literature provides some evidence of very high discount rates
 - 39-300% for refrigerators: Revelt and Train, 1998; Hwang et al., 1994; McRae, 1985; Meier and Whittier, 1983; Gately, 1980; Cole and Fuller, 1980

- Increasing energy prices is likely to trigger limited energy savings in the residential sector
 - Relative to energy efficiency standards or economic incentives targeting the investment decisions
- Two market failures = two instruments
 - A tax on energy use to internalize externalities
 - an instrument targeting the investment decisions (feebate for new cars, tax rebates for insulation, etc.)

The Impact of Energy Prices

The response to an increase in energy prices:

- 1. Consumers buy less refrigerators and, in relative terms, products that use less energy
 - A negative demand shock, stronger for less energyefficient models
- 2. Manufacturers/retailers decrease refrigerators prices
 - Cuts are larger for less-energy efficient models.
 - Depends on the degree of competition in the market
- 3. Manufacturers/retailers change the characteristics of products supplied in the market
 - The launch of energy-efficient models, the withdrawal of less efficient ones

What We Do

What is the impact of energy prices on residential energy use, taking into account both demand and supply responses?

- 1. How large are investment inefficiencies in energy use?
 - Which reduce the impact of energy prices on energy use
 - The level of the implicit discount rate
- 2. How large are refrigerator price adjustments?
 - Which reduce the impact of energy prices on energy use
- 3. How large are adjustments of product offers?
 - Which increase the impact of energy prices
- Using product-level panel data from 2002 to 2007 on the UK refrigerator market
 - Not available at the consumer level

Why Refrigerators?

- Energy efficiency matters
- The product is simple:
 - A few quality variables
- Energy consumption is completely determined at the time of purchase
 - Cannot adjust the level of consumption after purchase (no intensive margin)
 - In contrast with cars
- No markets for used fridges
 - In contrast with the car market
- Total demand is almost inelastic;;;
- EU Energy Label
 - Mandatory since 1995
 - « A+++ » cold appliances consume five times less energy than « D » appliances for the same cooling services.

Demand

- *T* markets, each representing the UK refrigerator market during year *t* with *J* (differentiated) products
- Indirect utility of consumer *i* who purchases a new refrigerator *j* in year *t* $U_{i,i,t} = V_{i,t} + \omega_{i,i,t}$ (1)

where $V_{i,t}$ is the average utility and $\omega_{i,i,t}$ is consumer *i*'s heterogeneity

• Under certain assumptions, Berry (1994) derives from (1):

$$\ln(s_{j,t}) - \ln(s_{0,t}) - \sigma \ln(s_{j/g,t}) = V_{j,t}$$

where $s_{0,t}$ and $s_{j/g,t}$ are respectively the market share of the outside good and of product *j* within its nest *g* at time t

This equation can be estimated with market-level data

Average utility

$$V_{j,t} = u_{j,t} - \alpha (p_{j,t} + \gamma C_{j,t})$$

with:

 $u_{j,t}$, the value of usage of the refrigerator j over its lifetime

 $p_{j,t}$, the purchase price

 $C_{j,t}$ is the electricity cost of the product which is forecasted at the time of purchase

 α is the marginal utility of money

 γ is the parameter capturing the size of investment inefficiencies

A key objective of the paper is to test: $\gamma = 1$

The electricity cost

The (discounted) lifetime electricity cost of product *j* is

$$C_{j,t} = \Gamma_j \times \sum_{s=1}^{L_j} \frac{q_{t+s}^*}{(1+r)^s}$$

Where:

- Γ_i is the level of energy consumption per time period
- L_j is product j's lifetime
- is the discount rate
- q_{t+s}^* is the forecasted electricity price at time t + s

Econometric issues

- q^{*}_{t+s} is not the actual price, but the price that is anticipated at the date of purchase.
 - Solution : Predicted with an autoregressive integrated moving-average model (ARIMA) on monthly data on real electricity prices
- $u_{j,t}$ is not observed.
 - Solution: We assume $u_{j,t} = u_j + \xi_{j,t}$, which can be partly controlled using first differences
- $p_{j,t}$ is endogenous because quantities and prices are simultaneously determined in the market equilibrium
 - Solution : IV-GMM estimation; instruments: out-of-group and within-group average capacity and out-of-group price
- The estimated specification is

$$\Delta \ln(s_{j,t}) = -\alpha (\Delta p_{j,t} + \gamma \Delta C_{j,t}) + \Delta \tau_t + \Delta \xi_{j,t}$$

Where Δ = difference operator, $\Delta \tau_t$ are time dummies differences absorbing the outside good market share and other time varying factors

Refrigerator price

• A reduced-form equation:

$$p_{j,t} = p^0_{j,t} - \eta C_{j,t} + \epsilon_{j,t}$$

where $p_{j,t}^{0}$ is the price of product *j* at time *t* if electricity cost during its lifetime is zero and $\epsilon_{j,t}$ is an error term.

• We do not observe $p^{0}_{i,t}$. We assume that:

$$p^{0}_{\ j,t} = p^{0}_{\ j} + v_{t}$$

• We estimate:

$$\Delta p_{j,t} = \Delta v_t - \eta \Delta C_{j,t} + \mu X_{j,t} + \Delta \epsilon_{j,t}$$

where $X_{j,t}$ is the vector of instruments

Product offer

- We observe the products in the market
- A dynamic probit model:

$$d_{j,t} = \Phi(k_d d_{j,t-1}^* + k_p p_{j,t} + k_c C_{j,t} + \lambda_t + \omega_j)$$

Where

- $d_{j,t}$ is the probability product j is in the market at time t
- d^{*}_{j,t-1} is a binary variable indicating whether the product was in the market at time t-1
- $p_{j,t}$ and $C_{j,t}$ are the product price and electricity cost
- λ_t and ω_i are time dummies and fixed effects

Problem: $p_{j,t}$ is not observed when the product is not in the market Solution: multiple imputations (Wooldridge, 2005)

GfK sales data for the UK market – 2002-2007

Variable	Unit	Mean	Std dev
Annual sales	# of units	2226	5054
Purchase price, $p_{j,t}$	real £	402	289
Appliance lifetime, L_j	years	15.38	2.34
Energy consumption, Γ_j	kWh/year	320	145
Height	cm	142	43
Width	cm	60	10
Capacity	litres	252	115
Energy efficiency rating ^a		2.46	0.88
Share combined refrigerators-freezers		0.55	-
Share of built-in appliances		0.22	-
Share of appliances with no-frost system		0.24	-
Instrumental variables			
Within-group: capacity	litres	254	111
Out-of-group: capacity	litres	268	22

Results (1): Sales

Dependent variable	Eq. (6): Log market share of product <i>j</i>	
Importance of total electricity costs (γ)	0.6007***	
	(3.32)	
Utility for money (α)	0.0056***	
	(2.82)	
Within-group correlation of error term (σ) for	0.6522***	
the demand equation	(5.59)	
Year dummies	Yes	
Observations	1,623	
Test of over-identifying restriction	Hansen's J chi2(2) = 1.80	
	(p = 0.4060)	

Investment inefficiencies are limited = $\gamma \cong 0.6 \Leftrightarrow implied \ discount \ rate \ is \ 10\%$

- Much lower than previous studies. Two possible explanations:
- Energy labeling
- Methodology (panel data)

Results (2): Price

Dependent variables	Eq. (7): Price of product <i>j</i>
Impact of discounted electricity costs on	-0.2860***
appliance prices (η)	(2.83)
Out-of-nest price	-3.11***
	(-3.7)
Out-of nest capacity	11.27***
	(4.5)
Within nest capacity	1.19
	(1.35)
Year dummies	Yes
Observations	1,623

Manufacturers/retailers reduces prices in response to an increase in electricty cost

• The impact of a 10% increase of the electricity cost is higher on less energy efficient models:

Manufacturers/retailers partly compensate the electricity price increase ¹⁷

Results (3): Product offer

Dependent variables	Eq. (10): Availability of product j
The product was commercialised the year	0.9124***
before (k_d)	(37.16)
Appliance price (k_p)	-0.0011***
- -	(3.89)
Expected and discounted running costs (k_c)	-0.0024***
	(3.44)
The product was commercialised in 2002 (k_1)	-0.5715***
	(17.70)
Nonredundant explanatory variables covering	
all time periods and including time-constant	Yes
product features (k_z)	
Year dummies	Yes
Observations	12,160
Number of imputations for appliance prices	10

1. Electricity cost has a significant impact

Impact on energy use

	Electricity price 10% higher		
Relative change in average energy consumption (kWh/year) as compared to the baseline	Short term impact on	With purchase	With purchase price adjustments and change in
	market shares	adjustments	product offer
Consumers are myopic and competition is imperfect	-2.2%	-1.2%	-2.3%

- The long term elasticity is rather low : -0.23
- Without investment and market inefficiencies, it would be -0.6

Relative change in average energy consumption	
(kWh/year) as compared to the baseline	
Consumers are myopic and competition is imperfect	-2.3%
Consumers are perfectly rational but competition is imperfect	-3.9%
There is perfect competition but consumers are myopic	-3.6%
Consumers are perfectly rational and there is perfect competition	-6.0%

 In the long run, investment inefficiencies and imperfect competition have the same (negative) impact on energy efficiency

- Energy taxation may not be very effective
- Solutions?
- 1. Energy labeling
 - Done since 1996. Only addresses the behavioral inefficiency.
- 2. Energy standards
 - A constraint on the set of products available in the market
- Subsidization of investments in energy efficiency or feebates (bonus/malus)
 - Decrease the purchase price of good products
- The welfare analysis is extremely complex
 - Cannot only focus on the demand response and consumer surplus
 - Much more than the analysis carried out in several recent papers
 - E.g., Allcott and Wozny, 2014

- A welfare analysis is not feasible
 - Stuctural approach limited to demand
- A partial analysis focusing on demand and consumer surplus is
 - Done in several recent papers (e.g., Allcott and Wozny, 2014)
 - But our analysis that this approach is not appropriate for supply responses are important

- The long term impact of energy prices on energy use is rather low
 - Elasticity is 0.23
- We find evidence of investment inefficiencies, but limited. The implied discount rate is 10%
 - Mandatory energy labeling?
- The impact on energy use of the asymmetric price response which partly absorbs the increase in energy price has the same order of magnitude
- Innovation changes in product offer partly compensates these two effects
- If competition on the refrigerator market was perfect and consumers were rational, the elasticity would be – 0.60
- Policy implications?
 - Direct regulation
 - Investment subsidies are likely to be ineffective

Thank you !