

Düsseldorf Institute for Competition Economics

Heinrich Heine University of Düsseldorf

The Cost of the German Energy Transition and Who Is Bearing It?

Justus Haucap

Germany's Energiewende

The Energiewende is, by and large, a disaster in all respects:

- no reduction in greenhouse gas emissions due to lack of coordination with EU ETS,
- incredibly expensive: 520 billion Euros from 2000-2025, with 150 billion Euros from 2000-2015 and 370 billion Euros from 2016-2025,
- responsible for the increasing fragmentation of Germany's and its neighbours' energy markets,
- problematic distributive consequences (poorer households tend to subsidise richer ones),
- market forces have largely been eliminated, model largely based on the idea of central planning, only without planning.

Germany's Energiewende

The Approach:

- About 5000 different feed-in-tariffs, jointly determined by two parliamentary chambers (Bundestag and Bundesrat),
- Differentiation according to technology (solar/PV, bio masses, wind, geothermal), plant size, plant location, date of installation,
- Until recently, there has been no element of competition or market in the renewable energy sector,
- due to the enormous rates of return the approach has been highly effective though,
- Cost explosion

Green Electricity Generation and Subsidies

Development of the Levy for Renewables

Development of Subsidies for Renewables

Green Electricity Subsidies

Renewable Energy Subsidies

Von den Verbrauchern zu tragende Förderung* pro erzeugter MWh EEG-Strom im Jahr 2017 nach Energiearten

Development of Subsidies for Green Electricity

Greenhouse Gas Emissions

Greenhouse Gas Emissions

Direct and Indirect Costs of Transition

- The direct cost of the energy turnaround are the direct subsidies paid out to RE.
- From 2000 to 2015 these costs sum up to: 125 billion € EEG + 8 billion € KWK = 133 billion €
- Until 2025 increase to 408 billion € + 17 billion € = 425 billion €
- Indirect cost:
 - Grid expansion: 56 billion €,
 - Offshore insurance, redispatch, reserve capacity, etc: 15 billion € until
 2025 (3,7 billion until 2015)
 - Interest rate rebates: 6 billion € until 2025 (3,74 billion € until 2015)
 - Research funding: 12 billion € to 2025, 4 billion € to 2015.
 - Write downs of conventional plants: 6 billion €
 - Negative electricity prices: 500 m € to 2025, 199 m € to 2015.

Direct and Indirect Costs of Transition

Sum of **direct** and **indirect** cost:

- 2000-2015: 150 billion €
- 2000-2025: 520 billion €

Cost per capita:

2000-2025: More than 6300 € per capita, of which 1830 € until
 2015 and more than 4500 € from 2016 to 2025

Cost per 4-person family:

■ 2000-2025: 25.000 €, of which 18.000 € from 2016-2025.

Monthly cost:

- 2000-2015: 10 € per capita per month, 2016-2025: 37,50 €
- 2000-2025: 20 € per capita per month

Who is Paying for it?

Von den Verbrauchern zu tragende Kosten* für das EEG 2016: 24,2 Mrd. €

Who is Benefiting?

Who is Benefiting?

EEG 2014 gesamt: Salden der EEG-Zahlungsströme nach Bundesländern

Final Conclusions

- If the energy turnaround is to serve as a role model, cost efficiency needs to play a larger role.
- Competition between green technologies should play a larger role.
- The recently introduced tender processes for large-scale PV and (onshore and offshore) wind is encouraging. In contrast to predictions by many proponents of feed-in tariffs, subsidy levels have significantly decreased.
- More direct responsibility for marketing green electricity is needed (instead of produce and forget mentality).
- Urgent need to reconcile green electricity build-out with EU ETS in order to reduce CO2.

Thank you for your attention!

Prof. Dr. Justus Haucap

Düsseldorf Institute for Competition Economics (DICE)

Universitätsstraße 1
40225 Düsseldorf, Germany
www.dice.hhu.de – www.dice-consult.de
haucap@dice.hhu.de

Twitter: @haucap und @DICEHHU

8 27.09.2017

Back-up

Anzahl der Industriebetriebe

Begünstigt durch die Besondere Ausgleichsregelung nach § 64 EEG: rd. 4% der Industriebetriebe

Volle EEG-Umlage: rd. 96% aller Industriebetriebe

Stromverbrauch der Industriebetriebe

Back-up: Entwicklung der EEG-Differenzkosten ab 2017

EEG Differenzkosten in Mrd. Euro											
	Jahr	2017	2018	2019	2020	2021	2022	2023	2024	2025	Summe
Referenz- preis	25€ /MWh	25,61	27,41	28,24	29,11	29,79	30,05	30,27	29,53	29,37	259,38
mittel	45€ /MWh	21,75	24,05	24,81	25,54	26,10	26,30	26,42	25,60	25,38	225,94
hoch	60€ /MWh	18,87	21,52	22,24	22,86	23,33	23,48	23,54	22,64	22,38	200,87