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Motivation and Perspective 



Current Approaches to Risk Valuation 

 The past number of years has seen significant interest in the role of risk in 
the valuation of electricity generating technologies.  
 

 One approach leans on the now widespread availability of computing to 
generate large Monte Carlo distributions of payoffs to different assets or for 
the same asset financed with different contract.  
 

 Usually the different distributions are compared on the basis of means 
and variances. For example, fixing the mean, a distribution with a higher 
variance is considered worse than a distribution with a lower variance. 
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Shortcoming 

 One shortcoming of this approach is its failure to connect with the standard 
tools of modern valuation and asset pricing.  

 #1 This approach ignores the key insight from portfolio theory that 
expected return is not a function of total variance, but rather of the 
component of variance that is correlated to macroeconomic variables.  

 #2 It also ignores the key insight from derivative pricing that variance in 
the final payoff is a poor tool for ranking risk.  

 The non-linearity of many payoffs makes the problem more difficult 
than is acknowledged in a simple mean-variance framework.  

 
 This disconnect undermines the reliability of many conclusions drawn from 

these Monte Carlo simulations, and it undermines the confidence we might 
have in the specific values calculated using the simulations. 

 
 
 
 
 
 

5 



Our Contribution 

 We show how to incorporate standard risk pricing principles into the popular 
Monte Carlo simulation analysis. 
 

 Our methodology has many conservative advantages. 
 The foundation is identical with core principles of valuation and asset 

pricing. 
 The structure is a transparent generalization of traditional DCF. 
 The structure is consistent with widely applied Monte Carlo approaches. 

 
 Our methodology has one key radical advantage. 

 It makes explicit demands on the modeler to be precise about the 
critical elements of risk and the price of risk.  

 "Whereof one cannot speak, thereof one must be silent." – Ludwig 
Wittgenstein, Tractatus Logico-Philosophicus 
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The Price and Value of Risk 

 
 

 Two distinct questions about an asset’s risk: 
 What is the price of risk?     …the market price. 
 What is the value of risk?     …to our company, in particular 

 The CAPM and other asset pricing models are all about the first question. 
 Total risk is never the right variable. Only non-diversifiable risk matters.  
 The market price of the cash flows from an asset are independent of 

who owns the asset. There are no portfolio gains to be had. 
 Hedging is a zero NPV action. Risk is bought and sold at a fair price. 

 Theories of hedging are all about the second question. 
 Total risk can matter. Diversifiable risk matters. For some companies.  
 Where risk lies can matter. Capital markets have friction, and more risk 

means more encounters with those frictions feeding back to cash flow. 
 This paper tackles the first question only, the market price of risk. 

 Leave it to later to address the value of risk to a specific company. 
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“A cynic is a man who knows the price of everything, and the value of nothing.” 
― Oscar Wilde, Lady Windermere's Fan 
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The Big Picture 



Step #1: The Market Price of Risk 

 We employ the classic single factor model with the returns to a diversified 
stock portfolio as the underlying priced risk factor. 

 We assume the returns evolve as a random walk—arithmetic Brownian 
motion. 
 

 This implies a set of stochastic discount factors that can be used to value 
cash flows received contingent on the different states of the market. 

 This is essentially what lies behind the Black-Scholes-Merton derivative 
pricing formulas. 
 

 This is also the model that validates the CAPM and standard risk-adjusted 
discounting formulas for a subset of problems—for any asset with a risk 
structure linear in the market risk factor and where risk grows linearly with 
time. 
 

 This is the simplest model. One could get fancy and use a different model of 
the underlying market risk factor or complicate it with multiple factors. 
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Step #2: Overlay a Model of Electricity Price Risk  

 Assume that electricity demand growth is stochastic, but correlated with 
returns on the stock market. 
 

 Yields a stochastic electricity price as follows… 
 surprisingly large demand growth leads to electricity price increases, 

but, 
 capacity additions cap the price;  
 drops in demand cause a drop in the electricity price. 

 
 The correlation between demand growth and the underlying risk factor is 

translated into a correlation between the electricity price and the underlying 
market risk factor. 

 But the translation is not linear, neither in a single period, nor through 
time. 

 Cash flows tied to the price of electricity inherit some priced market 
risk. 
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Step #3: Value Electricity Assets  

 Model the stochastic cash flows using an explicit state space approach. 
 The defining feature of a state is the underlying risk factor. 
 Each state has a unique discount factor – the stochastic discount factor. 
 Determine the expected cash flows for each state.  

 
 Value the cash flows using  

 (1) the probability of the state,  
 (2) the unique discount factor for market risk in that state, and  
 (3) discount for the time value of money. 

 
 Practitioners are familiar with summarizing risk via variances and co-

variances. – e.g., Beta. 
 Training often fails to warn about the dangers and problems with these 

summary statistics. 
 Our method does not rely on faulty summary statistics. It’s back to 

basics. 
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Demo #1: An Electricity Price Derivative 

 Consider an electricity swap that pays the floating price of one unit of 
electricity every year… 

 We can calculate the expected annual cash flow:  $21. 
 We can calculate the value using the stochastic discount factors associated 

with the market risk factor:  $432.  
 We can back out an implied average risk-adjusted discount rate: re = 4.9% 

 re is not fixed; it depends upon whether the initial electricity price is 
high or low. 
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The Risk Premium on an Electricity Price Derivative 
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Demo #2: An Electricity Generation Plant 

 Suppose we have an already installed generation plant. 
 Model how its production varies with the electricity price.  

 Simplest version: produce whenever price is above marginal cost. 
 We can calculate the expected annual cash flow:  $20. 
 We can calculate the value using the stochastic discount factors associated 

with the market risk factor:  $317   
 We can back out an implied average risk-adjusted discount rate: re = 6.3% 

 re is not fixed; it depends upon whether the initial electricity price is 
high or low; it depends upon where we are in the life of the plant. 
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The Risk Premium on an Electricity Generation Plant 
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Demo #3: A Different Electricity Generation Plant 

 Consider a plant with a higher marginal cost of operation. 
 Call it a peaker. 

 Is the implied average risk-adjusted discount rate higher or lower than for 
the base-load plant? 

 We can calculate the expected annual cash flow:  $31. 
 We can calculate the value using the stochastic discount factors associated 

with the market risk factor:  $375.   
 We can back out an implied average risk-adjusted discount rate: re = 8.3% 

 re is not fixed; it depends upon whether the initial electricity price is 
high or low; it depends upon where we are in the life of the plant. 

 The peaker is riskier, in the sense of market price of risk. 
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The Risk Premium on a Peaker Plant 
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Detail #1:  
The Market Price of Risk  Using a 
Stochastic Discount Factor 



A Reminder of What’s Behind a Risk-Adjusted Discount 
Rate: The Stochastic Discount Factor 

 typical situation—cash flow is positively 
correlated with the underlying risk factor 

 apply a positive risk-adjusted discount rate 
 in our example, 4% for the risk-free rate plus 

a 3% risk premium yielding a total 7% 

19 
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A Reminder of What’s Behind a Risk-Adjusted Discount 
Rate: The Stochastic Discount Factor (2) 

 insurance situation—cash flow is negatively 
correlated with the underlying risk factor 

 apply a NEGATIVE risk-premium 
 in our example, 4% for the risk-free rate plus 

a -3% risk premium yielding a total 1% 
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A Reminder of What’s Behind a Risk-Adjusted Discount 
Rate: The Stochastic Discount Factor (3) 
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 note that the variance of this second cash 
flow and the variance of the first cash flow 
are the same 

 yet one has a positive risk premium and the 
other a negative risk premium 
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A Reminder of What’s Behind a Risk-Adjusted Discount 
Rate: The Stochastic Discount Factor (4) 
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 the discount factor varies by the state of the underlying 
priced risk factor 

 when the underlying priced risk factor is low, then €1 
of cash flow is a type of insurance, and is worth more 
than €1 – the stochastic discount factor is above 1. 

(R) 
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A Reminder of What’s Behind a Risk-Adjusted Discount 
Rate: The Stochastic Discount Factor (5) 

 ranking linear profiles by risk is easy 
 allows the shortcut of using the mean cash flow 

and applying a single risk-adjusted discount rate 
 suppress the explicit reference to varying state 

contingent discount factors 
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 how shall we deal with non-linear payoffs? 
 now we need to explicitly reference the 

state contingent discount factors 
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How Do We “Recover” the Stochastic Discount Factor 

 Suppose that the stock market cumulative return, R, follows a random walk,  
 with mean return m=rf+p 

 
 Then, the probability of any cumulative return at horizon T,  (RT), is given by 

the normal distribution function, with…  
 mean  m T 
 variance  m

2 T 
 
 Then, the probability times the stochastic discount factor of any cumulative 

return at horizon T, (RT)(RT), is given by the adjusted normal distribution 
function, with… 

 mean  (m-p) T 
 variance  m

2 T 
 

 aka, the risk-neutral probability distribution: *(RT)  (RT) (RT), 
 we can recover the stochastic discount factor, although not needed. 
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The “true” probability distribution, (RT) -- assumed 
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The “risk-neutral” probability distribution, *(RT) – implied 
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…and this implies the stochastic discount factor, (RT). 
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Detail #2: 
Modeling Electricity Price Risk 



Step #2: Overlay a Model of Electricity Price Risk  
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Detail #3: 
Executing a Valuation 



We’re still doing DCF. 
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 The execution will operate much like the familiar DCF. 
 

 Start with the familiar DCF equation,  
 
 
 
 
 
 

 and focus on a single year’s discounting. 
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What’s Old? What’s New? 
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 Make 2 cosmetic changes: 
 use continuously compounded rates, 
 separate discounting for risk and discounting for time. 

 
 Make 1 fundamental change – a generalization: 

 replace a single risk-adjusted discount rate with a state-contingent 
stochastic discount factor. 

 
 
 
 
 



Continuously Compounded Rates 
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Separate Discounting For Risk And Discounting For Time 
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Preparing to Use the Stochastic Discount Factor 
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 Unpack the DCF formula by explicitly representing individual states of the 
underlying priced risk factor, indexed by j; here we shift to a discrete state 
space, … 
 
 
 
 

 Rearrange, moving the risk-adjusted discount factor inside the summation… 
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Substituting in the Stochastic Discount Factor 
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 Replace the single risk-adjusted discount factor with a state-contingent 
stochastic discount factor, … 
 
 
 
 
 

 Call the product of the probability and the stochastic discount factor the risk 
neutral probability,                      … 
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Discussion 



Situating this Methodology in the Literature 

 Real Options & Contingent Claims Valuation 
 

 What is Different? 
 #1 

 real options is sold as a break with traditional DCF 
 we emphasize the continuity – DCF is a special case 

 #2 
 real options is sold as a magic trick 
 we open and demystify the central contribution 

 #3 
 real options solutions seem like one off special cases 
 we demonstrate a general methodology with an obviously flexible 

structure 
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Caveats 

 This is more of a demonstration than a reliable set of values. The logic is 
correct, and the relationships shown are solid, but the specific values can 
only be consumed with the help of a heap of salt. 
 

 The stochastic discount factor methodology puts great demands on risk 
modeling. 

 The underlying priced risk factor, and 
 The specific project representation … how the priced risk enters. 

 
 The precision of the tools in principle far exceeds our ability to accurately 

calibrate them. So what is the point? 
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La méthode de simulation Monte-Carlo est mort,  
vive la méthode de simulation Monte-Carlo ! 
 


