

Nuclear Energy Agency with International Atomic Energy Agency

Guidance Document for Measuring Employment Generated by the Nuclear Power Sector

CONFÉRENCE SUR LES EFFETS SUR L'EMPLOI DES CHOIX DANS LE SECTEUR ÉLECTRIQUE: Smart Grids et transition énergétique Lundi 26 Octobre 2015

Geoffrey ROTHWELL, PhD

geoffrey.rothwell@oecd.org

Économiste principal, Division du développement nucléaire Agence de l'Énergie Nucléaire, AEN-OCDE (Retired Department of Economics, Stanford University, 1986-2013)

Guidance for Measuring Employment Generated by the Electricity Sector (1)

Although many macro-economic impact models are available, and while the **Input-Output (I-O) model** has its limitations, it is the most transparent with which to compare technologies. Analysts attempting to estimate the employment impacts of the existing or anticipated electric power industry should **identify the most transparent I-O model** of their country (region) and adapt the model by creating a separate electric power sector as described in this *Guidance Document*.

Guidance for Measuring Employment Generated by the Electricity Sector (2)

Direct employment in the commercial electric power sector consists of those employees working at power production facilities, including permanent subcontractors, such as security personnel and full-time equivalent outage/maintenance personnel.

Indirect employment includes full-time equivalent personnel in the supply chain (first-order indirect employees) and industries supplying products and services to this supply chain (nth-order indirect employees).

Induced employment is composed of all employment in the relevant economy.

Guidance for Measuring Employment Generated by the Electricity Sector (3)

For policy analysis, such as the calculation of employment impacts from new investment, total gross employment must be compared to the total gross employment of the next-best alternative.

The difference between the two yields the total net employment of investing in nuclear power. The next best alternative will vary from economy to economy and will usually be determined through the application of a multi-attribute analysis taking into account economics, energy security issues, and environmental impacts.

Current Guidance Document Contents

Foreword

Acknowledgements

Executive Summary

- 1. Introduction: Input-Output Models
- 2. Methodology: Input Flows to the Electric (Nuclear) Power Sector
- 3. Implementations: Estimating Electric (Nuclear) Sector Employment
- 4. Conclusions: Summary of Recommendations
- **Annex 1: Group of Expert Participants**
- **Annex 2: UN Industrial Standard Industrial Classification Codes**
- Annex 3: Translating Industrial Classification Systems
- Annex 4: GIF (Generation IV International Forum) Code of Accounts
- Annex 5: Power Plant Overnight Construction Cost
 - Allocation to ISIC Industries
- Annex 6: Interim Spent Nuclear Fuel Storage Facility Organizational Chart References

Industrial Classifications (UN)

UN International Standard Industrial Classification (ISIC, Revision 4)

http://unstats.un.org/unsd/cr/registry/regcst.asp?Cl=27

- A Agriculture, forestry and fishing
- **B** Mining and quarrying
- C Manufacturing
- D Electricity, gas, steam and air conditioning supply
- **E** Water supply; sewerage, waste management, and remediation activities
- **F** Construction
- G Wholesale and retail trade; repair of motor vehicles and motorcycles
- **H** Transportation and storage
- I Accommodation and food service activities
- J Information and communication
- K Financial and insurance activities
- L Real estate activities
- M Professional, scientific and technical activities
- N Administrative and support service activities
- O Public administration and defence; compulsory social security
- P Education
- **Q** Human health and social work activities
- R Arts, entertainment and recreation
- **S** Other service activities
- T Activities of households as employers and household production for own use
- U Activities of extraterritorial organizations and bodies

21 "one-digit" sectors with 99 "two-digit" sectors

Korean Classification System

Table 3.1: 38 Sectors in the Korean Nuclear Power Sector and National Economy

	Sector name	No.	Sector name
1	Agriculture, forestry, and fisheries	20	Thermal power generation
2	Mining and Quarrying	21	Nuclear power generation
3	Food, beverage and tobacco	22	Other generation
4	Textile and apparel	23	Gas and water supply
5	Wood and paper products	24	Construction (except sector 25)
6	Printing and reproduction of recorded media	25	Electric power plant construction
7	Petroleum and coal products	26	Wholesale and retail trade
8	Chemicals, drugs and medicines	27	Accommodation and food services
9	Inorganic basic chemical products	28	Transportation
10	Non-metallic mineral products	29	Communications and broadcasting
11	Basic metal products (except 9 sector)	30	Finance and insurance
12	Primary metal products	31	Real estate agencies and rental
13	Fabricated metal products	32	Business services
14	General machinery and equipment	33	Public administration and defense
15	Electronic and electrical equipment	34	Research and Development
16	Precision instruments	35	Education
17	Transportation equipment	36	Health services and social welfare
18	Furniture and other manufactured products	37	Other services
19	Hydro power generation	38	Dummy sectors

38 "one-digit" sectors with 421 "three-digit" sectors

Decomposing an ISIC Sector

Decomposing the UN ISIC "Electricity, gas, steam and air conditioning supply" sector

- D Electricity, gas, steam and air conditioning supply
- **D.1 Electricity**
- D.2 Gas, steam, and air conditioning supply
- **D.1.1 Electricity Generation**
- D.1.2 Electricity Transmission and Distribution (T&D)
- D.1.1.1 Electricity Generation Fossil (e.g., Natural Gas CCGT, Coal, Coal CCS, etc.)
- D.1.1.2 Electricity Generation Nuclear (e.g., LWR, GCR, HTGR, etc.)
- D.1.1.3 Electricity Generation Renewables (e.g., Hydro, Wind, Solar, Bio, etc.)

Decomposing Sector D into

- (D1) Electricity T&D (distributed in Korean system)
- (D2) Hydro Generation (Sector 19 in Korean system)
- (D3) Fossil Generation (Sector 20 in Korean system)
- (D4) Nuclear Generation (Sector 21 in Korean system)
- (D5) Renewables Generation (Sector 22 in Korean system)

All generating sectors sell all output to T&D; T&D sells to the rest of the economy

An Input-Output Model

		Produ	Jcers	Final Demand			Gross	
		1 j n	Sum	CIE	Sum	Import	Output	
Producers	1 : i : n	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	W ₁ : W _i : W _n	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	F1 Fi Fn	M ₁ :: M _i :: M _n	X ₁ :: X _i :: X _n	
	Sum	$U_1 \cdots U_j \cdots U_n$						
	Employees	$R_1 \cdots R_j \cdots R_n$	From L	ee (2014); se	e <i>Nucle</i>	ear		
	Business owners and Capital	$S_1 \cdots S_j \cdots S_n$	Technology and Economic					
Value Added	Depreciation	$D_1 \cdots D_j \cdots D_n$	Development in the Republic of Korea, IAEA (2009) http://www.iaea.org/sites/default/files/rok0809.pdf					
	Indirect taxes	$T_1 \cdots T_j \cdots T_n$						
	Sum	$V_1 \cdots V_j \cdots V_n$	/IIIes/1	<u>okuou9.pai</u>				
Gross	s Input	$X_1 \cdots X_j \cdots X_n$						

An Input-Output Table

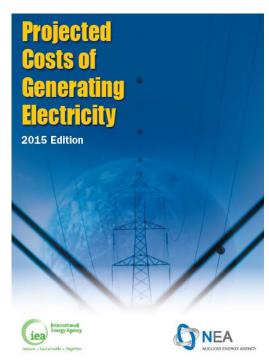
x ₁₁	x ₁₂	 \mathbf{x}_{1n}
x ₂₁	X ₂₂	 x _{2n}
•••		 •••
X _{n1}	X _{n2}	 x_{nn}

Insert Electricity Sector into Input-Output Table in I-O Model

The I-O table is represented by the matrix of X_{ij} where the index i represents the intermediate input produced by industry i to produce one unit of commodity j.

]	Electricity			
X ₁₁	X ₁₂		X _{1η}		X _{1n}	
X ₂₁	X ₂₂		x _{2η}	•••	X _{2n}	
•••	•••			•••		
X _{i1}	x _{i2}		Χ _{iη}	•••	x _{in}	
	•••	•••		•••		
X _{n1}	x _{n2}		X _{nη}		X _{nn}	

		T&D	Hydro	Fossil	Nuclear	Renew		
X ₁₁	X ₁₂	 X _{1η}	$X_{1\eta}$	$X_{1\eta}$	$X_{1\eta}$	Χ _{1η}		X _{1n}
x ₂₁	x ₂₂	 X _{2η}	X _{2η}	$\mathbf{x}_{2\eta}$	x _{2η}	X _{2η}	•••	x _{2n}
•••		 						•••
X _{i1}	x _{i2}	 X _{iη}	$x_{i\eta}$	$x_{i\eta}$	$x_{i\eta}$	$x_{i\eta}$	•••	\mathbf{x}_{in}
X _{n1}	X _{n2}	 Χ _{nη}	Χ _{nη}	$\mathbf{x}_{n\eta}$	X _{nη}	X _{nη}		x _{nn}



Projecting Generating Costs, including Labour Expenses and Hours

https://www.iea.org/bookshop/711-Projected Costs of Generating Electricity

- Focus on lifetime costs for broad set of generation technologies being built between now and 2020 (projected costs in 2020!)
- Joint study with the International Energy Agency (IEA)
- Levelised Cost of Electricity (LCOE)
- Does not include grid integration and issues covered by other NEA analyses
- Aims to maintain cross country and series comparability
- Study conducted under the Expert Group on Projected Costs of Generating Electricity(EGC) with advice from Prof. Dr. Jan Horst Keppler, co-author of "Project Costs, 2010 Update"

Electricity Generating Technologies

Type of Generation	Number of Data Points
D2: Hydro – small / large	12 / 16
D3: Coal	14
D3: Natural Gas – CCGT / OCGT	13 / 4
D4: Nuclear	11
D5: Solar PV – residential / commercial / large / CSP	12 / 14 / 12 / 4
D5: Wind – on-shore / off-shore	21 / 12
D5: CHP (all types)	19
D5: Biomass and biogas	11
D5: Geothermal	6
TOTAL (DOES NOT INCLUDE T&D, D1)	181

Levelised Cost of Electricity (LCOE)

Report calculates the LCOE with discount rates of 3%, 7% and 10% equal to the present discounted value in all years for

Capital Cost + O&M Cost + Fuel Cycle Cost
Energy Generated

The annual costs (in constant dollars) and revenues from energy (in MWh) are discounted to the start of plant operations using real discount rates.

If all costs are assumed (or calculated) to be equal in all years, LCOE can be determined from dividing annual total cost by annual energy generated.

Construction Expenditures

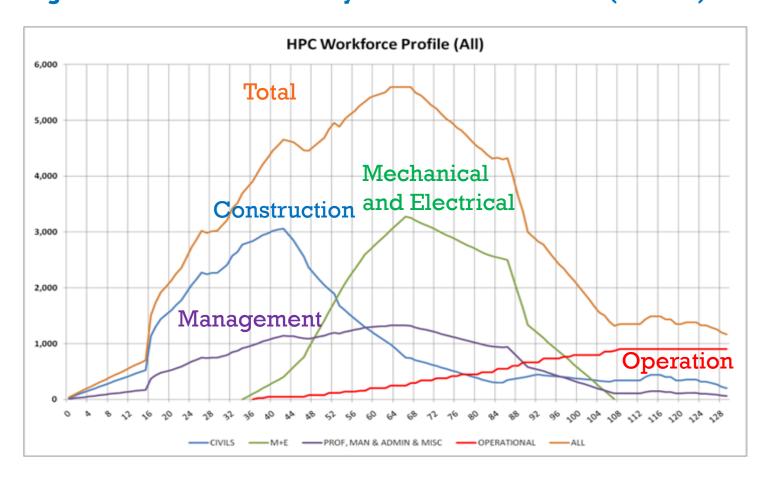
r	.248 in	http://www.psc.state.fl.us/library/filings/07/09467-0	7/09467-07	7.ndf			
P	10 111	MWe (gross) per unit x two units	- pui				
		MWe (net) per unit x two units	2,742 2,660				
		112110 (net) per unit a tillo units	2,000		Millions	\$/kWe	
Cost Category	ISIC	ISIC Code Description	NAICS	EMWG/GIF	2007\$*	(net)	
Reactor Plant Equipment	2513	Manu. of steam generators	332410	220	\$1,609	\$605	17.4%
Turbine Plant Equipment	2811	Manu. of engines and turbines	333611	230-233-234	\$1,074	\$404	11.6%
Electric Plant Equipment	2710	Manu. of electric generators, transformers, etc.	335310	240-241-242	\$475	\$179	5.1%
Misc. Plant Equipment	2810	Manu. of general-purpose machinery	333900	260	\$168	\$63	1.8%
Switch Yard	2710	Manu. of electric generators, transformers, etc.	423610	241+242	\$107	\$40	1.2%
Fuel	2011	Manu. of basic chemicals	325180	550	\$52	\$19	0.6%
Circ. Water Pumps & Pipe	2813	Manu. of other pumps and valves	333911	250-251	\$30	\$11	0.3%
Aux Boilers	<u>2512</u>	Manu. of tanks, reservoirs and containers	332410	234	\$18	\$7	0.29
Owner Transition		Electric power gen., trans. and distribution	221113	340	\$221	\$83	
Cooling Towers	3320	Installation of industrial machinery and equip.	238220	251	\$151	\$57	1.69
Main Cond. Heat Reject Sys.	<u>3320</u>	Installation of industrial machinery and equip.	238220	233	\$97	\$36	1.0%
Other Owner Costs	<u>3510</u>	Electric power gen., trans. and distribution	<u>221113</u>	400	\$44	\$16	0.5%
Land Costs - Offsite	<u>3510</u>	Electric power gen., trans. and distribution	<u>221113</u>	110	\$0	\$0	0.0%
Land Costs - Site	<u>3510</u>	Electric power gen., trans. and distribution	221113	110	\$0	\$0	0.0%
Construction Labor, Manual	4220	Construction of utility projects	237130	Direct L	\$1,635	\$615	17.69
Structure & Improvements		Construction of utility projects	237130		\$911	\$342	
Site work		Construction of utility projects	237130	211	\$296	\$111	
Security Infrastructure		Construction of utility projects	237130	214		\$47	
Additional Required Scope		Construction of utility projects	237130	500-550	\$113	\$42	1.29
E H 0.00° G	7110	A service of service of the	E/1220	250 - 250	фоло	#26	10.22
Engineers Home Office Services	_	Architectural and engineering activities	541330	350+370	\$959		10.39
Construction Services		Architectural and engineering activities	541330	310+320		\$231	
Owner Project Management		Architectural and engineering activities	541330	360+380	\$191	\$72	
EPC startup costs	7110	Architectural and engineering activities	<u>541330</u>	330	\$160	\$60	1.79
Permits/Licensing	8413	Regulation of businesses	926130	100-110	\$120	\$45	1.39
Site Security	8010	Private security activities	561612	Indirect L	\$105	\$39	1.19
Total Overnight		* Includes contingency			\$9,272	\$3,486	1000

Twin ABWR TVA (2005)

Here
"Direct" Labour
and
"Indirect" Labour
refer to construction
accounts,
not I-O model

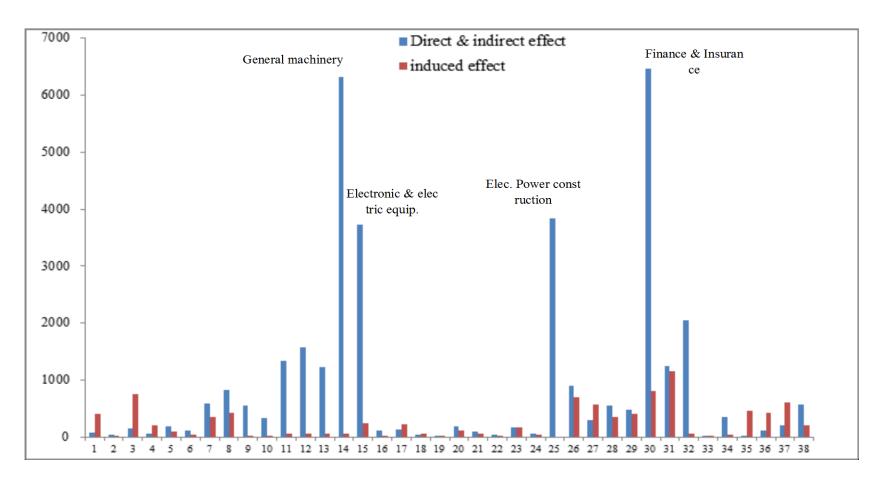
"Direct" Labour \$1,635M (17.6%)

"Indirect" Labour \$959M (10.3%)


"Total" Labour \$2,600M (28%)

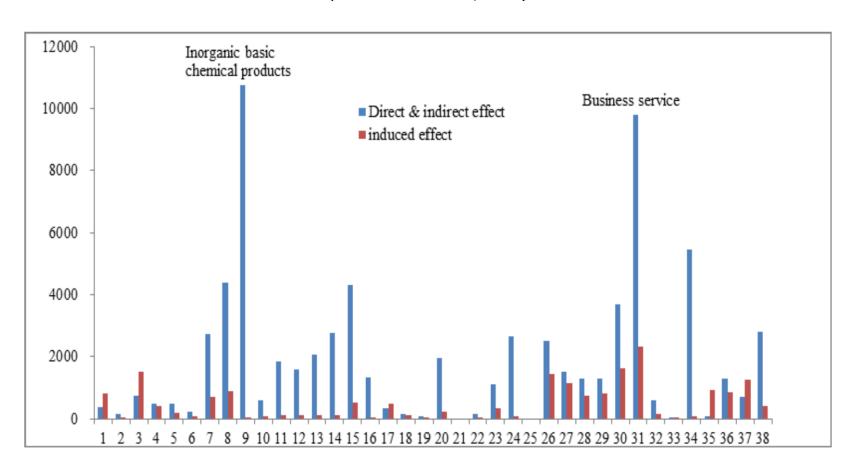
Levelisation in 4 Periods

Labour Requirements and Costs can be levelised for 4 periods:
(1) Construction, (2) Operation, (3) Decommissioning & (4)Waste
Management. Consider Hinkley Point C construction (2 EPRs):


Guidance Document: Periodisation

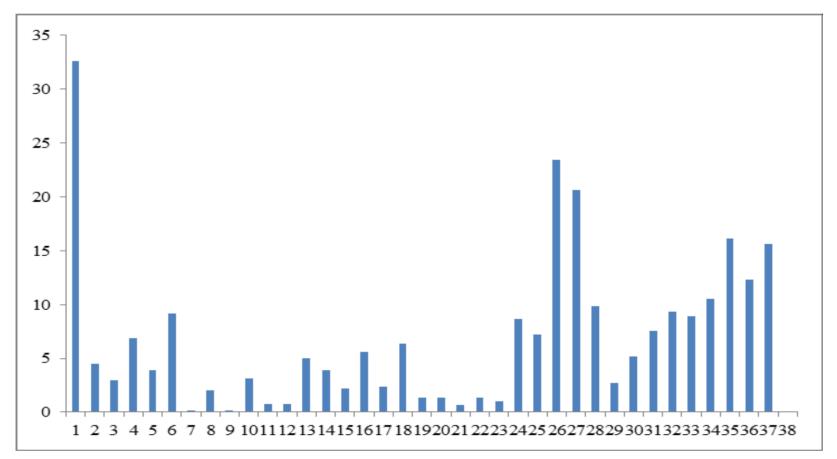
- 2. Input Flows to the Nuclear Power Sector
- 2. 1. Nuclear Power Plant Construction (e.g., years 1-10)
- 2.1.1. Nuclear Power Plant Construction Expenditures
- 2.1.2. Nuclear Power Plant Construction Labour
- 2.2. Nuclear Power Plant Operation (e.g., years 11-60)
- 2.2.1. Employment Expenditures during Nuclear Generation
- 2.2.2. O&M Expenditures during Nuclear Generation
- 2.2.3. Fuel Expenditures during Nuclear Generation
 - 2.2.3.1. Uranium Mining and Milling
 - 2.2.3.2. Uranium Conversion, Enrichment, and Fuel Fabrication
- 2.3. Nuclear Power Plant Decommissioning (e.g., years 60-70)
- 2.4. Spent Nuclear Fuel and Waste Management (e.g., years 60-100)

Sectorial Backward Linkages in NPP Construction (100 million won, 2009)



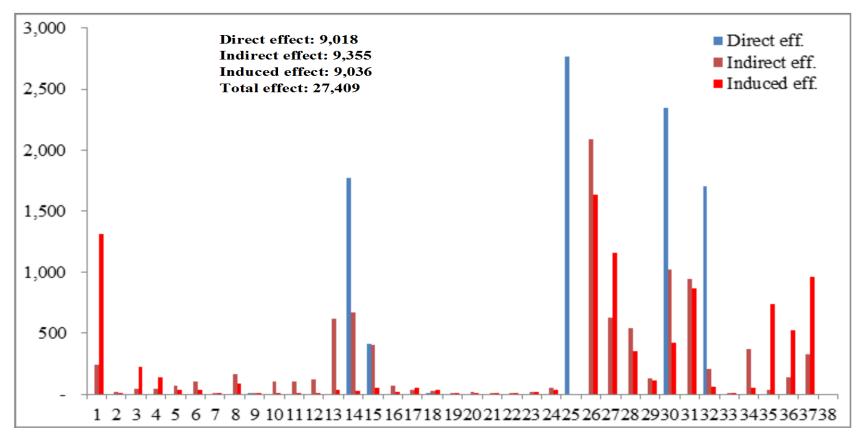
Linkages in Korean Operation

Sectorial Backward Linkages in NPP <u>Operation</u> (100 million Won, 2009)



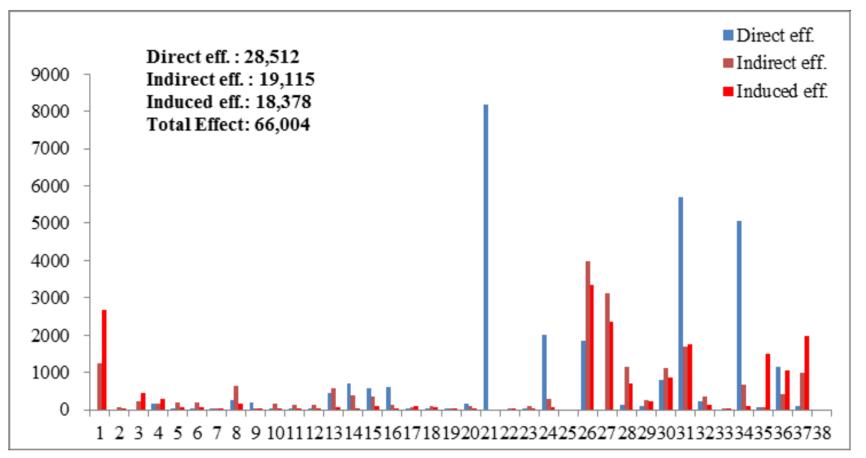
Korean Labour/Billion Won

Labour Coefficients (employee/billion Won)



Korean Labor in Construction

Employment from NPP Construction in 2009

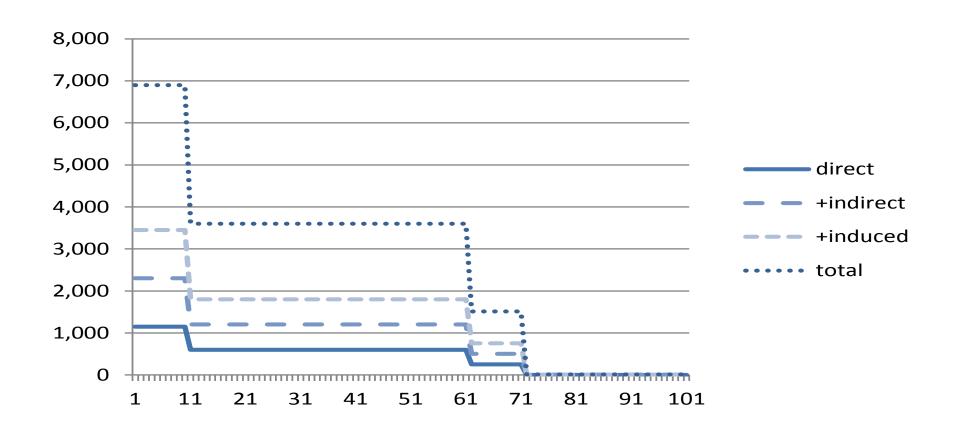


Korean Labor in Operation

Employment from NPP Operation

Direct, Indirect, and Induced

Total Korean Direct, Indirect, and Induced Employment in the Korean Nuclear Power Sector (2007)


	Direct Employment	Indirect Employment	Induced Employment	Total Employment
Construction	9,020	9,350	9,030	27,400
Operation	20,350	<u>27,280</u>	18,380	<u>66,010</u>
Total	29,370	36,630	27,410	93,410

Korean Labor in Operation

Employment per 1,000 MW (levelized) following Korean Multipliers

Sub-activities to achieve the overall goal of CRP:

- (1) <u>Assemble a group of experts</u> to provide the input on the quantitative macroeconomic analysis of nuclear projects
- (2) <u>Support efforts of participating Member States in developing appropriate tools and methods</u>
- (3) Review, test and apply prototype methodologies (quantitative models) to analyse economic and social impacts of nuclear programmes at the national and region level; if needed, agree on common harmonization of analytical elements
- (4) Provide assistance in application of the IAEA's tools for quantitative macroeconomic analysis to selected case studies; arrange training in tools and methods for capacity building (if needed)
- (5) Compile the current knowledge in a report together with areas of future research and development to cover the modelling techniques, data restrictions and ways to manage the data gaps