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What do we do?

We forecast the day ahead electricity spot price

We show that the intra-day relation between the
hourly prices is important

We show that we can gain from multivariate
framework
We show that a further improvement can be
achieved by combining forecasts from different
models
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A bit on electricity prices

Electricity Prices Distinct
Characteristics:

Pronounced day of the
week and seasonal cycle
effects
Possible negative price
Extreme price swings,
sometimes referred to as
"spikes"
Mean reversion
Highly volatile
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Figure: Spot electricity prices over time
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Price formation

Invisible hand –> visible hand
"Nord Pool Spot" is an auction based exchange
The quotes are submitted simultaneously for all hours of the next
day
Hourly bids and offers from producers and consumers Price is set
such that opposing sides are balanced

Spot price is the average of these 24 hourly prices
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Why do we do it?

The spot price is used as a reference for derivative pricing, e.g.
hourly power options or daily callable options

Market participants may develop efficient bidding strategies that
help to control risk and increase profit
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Competing approaches
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what do we know?

Hendry and Hubrich (2006)

Multivariate framework is more complex
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Related work

Weron and Misiorek (2008)
Cuaresma et al. (2004)
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Estimation

Levels

Five years rolling window

Dummy variables

Lags 1, 2, 7
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Univariate models

Benchmark model: Dynamic ARX model

ȳt = ϕ0 +
P∑

i=1

ϕiȳt−i +
K∑

k=1

ψkdt,k + εt

HAR:

ȳt = α0 + α1ȳt−1 + α2ȳt−1,Week + α3ȳt−1,Month +
K∑

k=1

ψkdt,k + εt
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Multivariate models

VAR models, unrestricted (UVAR) and restricted (DVAR)

Yt = ΦXt + et, et ∼ i.i.N(0,Σ)

Potential overfitting.
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Multivariate models - dealing with over fitting

Bayesian VAR (BVAR)
Minnesota prior - posterior is obtained analytically

Shrinkage towards random walk

Φprior
ij =

{1 if i = j
0 otherwise

Vh,ii =


λ1
l2 for coefficients on own lags for lag l = 1, . . . , p
λ2
l2
σi
σh

for coefficients on cross lags of yit for lag l = 1, . . . , p
λ3σh for coefficients on exogenous dummy variables

We follow standard literature when choosing hyper parameters. (e.g.
Koop and Korobilis 2010)
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Multivariate models - dealing with over fitting

Convenient close form:

α | y ∼ N(αpost,Vpost),

with

Vpost = {(Vprior)−1 + Σ̂−1 ⊗ (X′X)}−1,

αpost = Vpost{(Vprior)−1αprior + (Σ̂−1 ⊗ X)′y}.
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Illustration
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Multivariate models - dimension reduction

Another way to reduce the complexity is via dimension reduction.

VAR - Principal Component Regression

F̂t+1 = ∆̂1F̂t + ∆̂2F̂t−1 + ∆̂3F̂t−6

Ŷt+1 = Θ̂F̂t+1 + Γ̂Dt

Reduced Rank Regression, closely related, but with the forecast in
mind
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Combination

We can combine the two approaches:
Reduced Rank Bayesian VAR
Forecast combination from all models

How to combine the forecasts? i.e. what are the weights?
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Combination (cont’d)

Simple average
Constrained LS

OLS
Variance based
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Evaluation

Evaluation metrics:

RMSE =

√√√√ 1
(T − h)

T∑
t=h+1

(ŷt − yt)2

MAE =
1

(T − h)

T∑
t=h+1

|̂yt − yt|

MPE =
1

(T − h)

T∑
t=h+1

|̂yt − yt|
|yt|
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Evaluation (cont’d)

Apart from the spot price, we look at the individual hourly forecast. We
add another "overall" fit measure:

WRMSE = RMSE′Q

with

Qj = (
var(yj)∑24
j=1 var(yj)

)−1, j = 1, ..., 24
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Results

MODEL RMSE MAE MPE

ARX(p) 23.41 11.93 0.054

RRR(5) 0.98 0.85 0.896
FM(5) 0.90 0.88 0.891
DVAR 1.007 1.03 1.026
UVAR 0.94 0.85 0.899
BVAR 0.89 0.83 0.841
RRP(5) 0.91 0.90 0.955

AVE 0.88 0.82 0.834
CLS 0.84 0.80 0.819
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Results (cont’d)

MODEL WRMSE RMSE MAE MPE
RRR(5) 27.44 29.81 12.73 0.062
FM(5) 26.80 28.73 12.94 0.062
DVAR 28.45 30.62 14.03 0.067
UVAR 27.17 29.56 12.47 0.061
BVAR 26.36 28.59 12.30 0.058
RRP(5) 26.94 29.18 13.73 0.066

AVE 27.83 29.83 13.16 0.065
CLS 25.29 27.31 11.97 0.057
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Results (cont’d)
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Results - stability
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Conclusion

We forecast the day ahead electricity spot price.
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Conclusion

Intra-day relation between the hourly prices is
important

We gain from multivariate framework

We show that a further improvement can be achieved
by combining forecasts from different models
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We show that a further improvement can be achieved
by combining forecasts from different models

Bouwman, Raviv, Van Dijk University Paris-Dauphine

Short-term
Elec-
tric-
ity
Price
Fore-cast-
ing
Work-
shop,
April
28,
2014



30

Introduction
How do we do it?

Results
Summary

Thank you

Bouwman, Raviv, Van Dijk University Paris-Dauphine

Short-term
Elec-
tric-
ity
Price
Fore-cast-
ing
Work-
shop,
April
28,
2014


	Introduction
	How do we do it?
	Results
	Summary

