Forecasting short term electricity prices

Kees Bouwman² Eran Raviv³ Dick van Dijk¹

¹Econometric Institute, ESE Rotterdam

²Cardano

³APG-Asset Management

Short-term Electricity Price Forecasting Workshop April 28, 2014

- We forecast the day ahead electricity spot price
- We show that the intra-day relation between the hourly prices is important
- We show that we can gain from multivariate framework
- We show that a further improvement can be achieved by combining forecasts from different models

What do we do?

• We forecast the day ahead electricity spot price

- We show that the intra-day relation between the hourly prices is important
- We show that we can gain from multivariate framework
- We show that a further improvement can be achieved by combining forecasts from different models

- We forecast the day ahead electricity spot price
- We show that the intra-day relation between the hourly prices is important
- We show that we can gain from multivariate framework
- We show that a further improvement can be achieved by combining forecasts from different models

- We forecast the day ahead electricity spot price
- We show that the intra-day relation between the hourly prices is important
- We show that we can gain from multivariate framework
- We show that a further improvement can be achieved by combining forecasts from different models

- We forecast the day ahead electricity spot price
- We show that the intra-day relation between the hourly prices is important
- We show that we can gain from multivariate framework
- We show that a further improvement can be achieved by combining forecasts from different models

A bit on electricity prices

Electricity Prices Distinct Characteristics:

- Pronounced day of the week and seasonal cycle effects
- Possible negative price
- Extreme price swings, sometimes referred to as "spikes"
- Mean reversion
- Highly volatile

University Paris-Dauphine

A bit on electricity prices

- Pronounced day of the week and seasonal cycle effects
- Possible negative price
- Extreme price swings, sometimes referred to as "spikes"
- Mean reversion
- Highly volatile

A bit on electricity prices

- Pronounced day of the week and seasonal cycle effects
- Possible negative price
- Extreme price swings, sometimes referred to as "spikes"
- Mean reversion
- Highly volatile

A bit on electricity prices

- Pronounced day of the week and seasonal cycle effects
- Possible negative price
- Extreme price swings, sometimes referred to as "spikes"
- Mean reversion
- Highly volatile

A bit on electricity prices

- Pronounced day of the week and seasonal cycle effects
- Possible negative price
- Extreme price swings, sometimes referred to as "spikes"
- Mean reversion
- Highly volatile

A bit on electricity prices

- Pronounced day of the week and seasonal cycle effects
- Possible negative price
- Extreme price swings, sometimes referred to as "spikes"
- Mean reversion
- Highly volatile

A bit on electricity prices

- Pronounced day of the week and seasonal cycle effects
- Possible negative price
- Extreme price swings, sometimes referred to as "spikes"
- Mean reversion
- Highly volatile

Figure: Spot electricity prices over time

Bouwman, Raviv, Van Dijk

University Paris-Dauphine

Price formation

- Invisible hand -> visible hand
- "Nord Pool Spot" is an auction based exchange
- The quotes are submitted simultaneously for all hours of the next day
- *Hourly* bids and offers from producers and consumers Price is set such that opposing sides are balanced

• Spot price is the average of these 24 hourly prices

Why do we do it?

- The spot price is used as a reference for derivative pricing, e.g. hourly power options or daily callable options
- Market participants may develop efficient bidding strategies that help to control risk and increase profit

Why do we do it?

- The spot price is used as a reference for derivative pricing, e.g. hourly power options or daily callable options
- Market participants may develop efficient bidding strategies that help to control risk and increase profit

Why do we do it?

- The spot price is used as a reference for derivative pricing, e.g. hourly power options or daily callable options
- Market participants may develop efficient bidding strategies that help to control risk and increase profit

Competing approaches

Multivariate model

Univariate model

Bouwman, Raviv, Van Dijk

what do we know?

• Hendry and Hubrich (2006)

Multivariate framework is more complex

what do we know?

• Hendry and Hubrich (2006)

• Multivariate framework is more complex

what do we know?

- Hendry and Hubrich (2006)
- Multivariate framework is more complex

Related work

- Weron and Misiorek (2008)
- Cuaresma et al. (2004)

Data

Data

Average Hourly Price per Day of the week

Hour

Data

Hour

Estimation

• Levels

- Five years rolling window
- Dummy variables
- Lags 1, 2, 7

Estimation

- Levels
- Five years rolling window
- Dummy variables
- Lags 1, 2, 7

Estimation

- Levels
- Five years rolling window
- Dummy variables
- Lags 1, 2, 7

Estimation

- Levels
- Five years rolling window
- Dummy variables
- Lags 1, 2, 7

Univariate models

• Benchmark model: Dynamic ARX model

$$ar{\mathbf{y}}_t = arphi_0 + \sum_{i=1}^P arphi_i ar{\mathbf{y}}_{t-i} + \sum_{k=1}^K \psi_k d_{t,k} + \varepsilon_t$$

• HAR:

$$\bar{y}_t = \alpha_0 + \alpha_1 \bar{y}_{t-1} + \alpha_2 \bar{y}_{t-1,Week} + \alpha_3 \bar{y}_{t-1,Month} + \sum_{k=1}^K \psi_k d_{t,k} + \varepsilon_t$$

Multivariate models

• VAR models, unrestricted (UVAR) and restricted (DVAR)

$$Y_t = \Phi X_t + e_t, \qquad e_t \sim i.i.N(0, \Sigma)$$

• Potential overfitting.

Multivariate models - dealing with over fitting

Bayesian VAR (BVAR)

- Minnesota prior posterior is obtained analytically
- Shrinkage towards random walk

 $\Phi_{ij}^{prior} = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{otherwise} \end{cases}$

$$\mathbf{V}_{h,ii} = \begin{cases} \frac{\lambda_1}{l^2} \\ \frac{\lambda_2}{l^2} \frac{\sigma_i}{\sigma_h} \\ \lambda_3 \sigma_h \end{cases}$$

for coefficients on own lags for lag l = 1, ..., pfor coefficients on cross lags of y_{it} for lag l = 1, ..., pfor coefficients on exogenous dummy variables

• We follow standard literature when choosing hyper parameters. (e.g. Koop and Korobilis 2010)

Multivariate models - dealing with over fitting

Bayesian VAR (BVAR)

- Minnesota prior posterior is obtained analytically
- Shrinkage towards random walk

$$\Phi_{ij}^{prior} = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{otherwise} \end{cases}$$

$$\mathbf{V}_{h,ii} = \begin{cases} \frac{\lambda_1}{l^2} \\ \frac{\lambda_2}{l^2} \frac{\sigma_i}{\sigma_h} \\ \lambda_3 \sigma_h \end{cases}$$

.

for coefficients on own lags for lag l = 1, ..., pfor coefficients on cross lags of y_{it} for lag l = 1, ..., pfor coefficients on exogenous dummy variables

• We follow standard literature when choosing hyper parameters. (e.g. Koop and Korobilis 2010)

Multivariate models - dealing with over fitting

Bayesian VAR (BVAR)

- Minnesota prior posterior is obtained analytically
- Shrinkage towards random walk

$$\Phi_{ij}^{prior} = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{otherwise} \end{cases}$$

$$\mathbf{V}_{h,ii} = egin{cases} rac{\lambda_1}{l^2} & \sigma_i \ rac{\lambda_2}{l^2} & \sigma_h \ \lambda_3 \sigma_h \end{cases}$$

.

for coefficients on own lags for lag l = 1, ..., pfor coefficients on cross lags of y_{it} for lag l = 1, ..., pfor coefficients on exogenous dummy variables

• We follow standard literature when choosing hyper parameters. (e.g. Koop and Korobilis 2010)

Multivariate models - dealing with over fitting

Convenient close form:

$$\alpha \mid \mathbf{y} \sim N(\alpha^{post}, \mathbf{V}^{post}),$$

with

$$\mathbf{V}^{post} = \{ (\mathbf{V}^{prior})^{-1} + \widehat{\Sigma}^{-1} \otimes (\mathbf{X}'\mathbf{X}) \}^{-1}, \\ \alpha^{post} = \mathbf{V}^{post} \{ (\mathbf{V}^{prior})^{-1} \alpha^{prior} + (\widehat{\Sigma}^{-1} \otimes \mathbf{X})' \mathbf{y} \}.$$

Illustration

Multivariate models - dimension reduction

Another way to reduce the complexity is via dimension reduction.

• VAR - Principal Component Regression

$$\widehat{F}_{t+1} = \widehat{\Delta}_1 \widehat{F}_t + \widehat{\Delta}_2 \widehat{F}_{t-1} + \widehat{\Delta}_3 \widehat{F}_{t-6} \widehat{Y}_{t+1} = \widehat{\Theta} \widehat{F}_{t+1} + \widehat{\Gamma} D_t$$

• Reduced Rank Regression, closely related, but with the forecast in mind

Multivariate models - dimension reduction

Another way to reduce the complexity is via dimension reduction.

• VAR - Principal Component Regression

$$\widehat{F}_{t+1} = \widehat{\Delta}_1 \widehat{F}_t + \widehat{\Delta}_2 \widehat{F}_{t-1} + \widehat{\Delta}_3 \widehat{F}_{t-6} \widehat{Y}_{t+1} = \widehat{\Theta} \widehat{F}_{t+1} + \widehat{\Gamma} D_t$$

• Reduced Rank Regression, closely related, but with the forecast in mind

Combination

We can combine the two approaches:

- Reduced Rank Bayesian VAR
- Forecast combination from all models

• How to combine the forecasts? i.e. what are the weights?

Combination

We can combine the two approaches:

- Reduced Rank Bayesian VAR
- Forecast combination from all models
- How to combine the forecasts? i.e. what are the weights?

Combination (cont'd)

- Simple average
- Constrained LS
 - OLSVariance based

Combination (cont'd)

- Simple average
- Constrained LS
 - OLS
 - Variance based

Evaluation

Evaluation metrics:

$$RMSE = \sqrt{\frac{1}{(T-h)} \sum_{t=h+1}^{T} (\hat{y}_t - y_t)^2}$$
$$MAE = \frac{1}{(T-h)} \sum_{t=h+1}^{T} |\hat{y}_t - y_t|$$
$$MPE = \frac{1}{(T-h)} \sum_{t=h+1}^{T} \frac{|\hat{y}_t - y_t|}{|y_t|}$$

Evaluation (cont'd)

Apart from the spot price, we look at the individual hourly forecast. We add another "overall" fit measure:

$$WRMSE = RMSE'Q$$

with

$$Q_j = (\frac{var(y_j)}{\sum_{j=1}^{24} var(y_j)})^{-1}, \qquad j = 1, ..., 24$$

Results

MODEL	RMSE	MAE	MPE
ARX(p)	23.41	11.93	0.054
RRR(5)	0.98	0.85	0.896
FM(5)	0.90	0.88	0.891
DVAR	1.007	1.03	1.026
UVAR	0.94	0.85	0.899
BVAR	0.89	0.83	0.841
RRP(5)	0.91	0.90	0.955
AVE	0.88	0.82	0.834
CLS	0.84	0.80	0.819

Results (cont'd)

MODEL	WRMSE	RMSE	MAE	MPE
RRR(5)	27.44	29.81	12.73	0.062
FM(5)	26.80	28.73	12.94	0.062
DVAR	28.45	30.62	14.03	0.067
UVAR	27.17	29.56	12.47	0.061
BVAR	26.36	28.59	12.30	0.058
RRP(5)	26.94	29.18	13.73	0.066
AVE	27.83	29.83	13.16	0.065
CLS	25.29	27.31	11.97	0.057

Results (cont'd)

Bouwman, Raviv, Van Dijk

Results - stability

Rolling MPE Ratio

!7

Conclusion

• We forecast the day ahead electricity spot price.

Conclusion

• Intra-day relation between the hourly prices is important

• We gain from multivariate framework

• We show that a further improvement can be achieved by combining forecasts from different models

Conclusion

- Intra-day relation between the hourly prices is important
- We gain from multivariate framework
- We show that a further improvement can be achieved by combining forecasts from different models

- Intra-day relation between the hourly prices is important
- We gain from multivariate framework
- We show that a further improvement can be achieved by combining forecasts from different models

Thank you