

Correcting price-cost discrepancy:

Complementing generators'revenues by transforming market regime

Dominique FINON
Chaire CEEM and CNRS-CIRED

Introduction

- This market framework present a significant obstacle in the effort to develop a robust energy market for low carbon technologies (LCT)
- The existing market structure is driven by prices aligned on short run marginal costs.
- These technologies have high upfront capital costs and low short run marginal costs
- Increase problem with penetration of RES-E out of market with support of long term price arrangements (FIT):
 - increasing level of subsidies while whole sale price decrease
 - Increasing distorted effects on the long term price signal
- A strange mix of liberalised market and long term support arrangements

- How to order in all this?
- Is it the best method to do it by imposing the strict respect of the competition principles at all costs?
- All this arrangements are state aids :
 - the application of new guidelines on state aids could be very restricitive

Part 1 Increasing market failures by correcting market failures

Investment in idealized Electricity market

Classic representation of long term optimal mix by screening curves

- Price on energy only market
- Shortage cost as a linear function
- Area 1 = scarcity rent for every technology/ peaking units
- Area II as infra-marginal rents for mid load and base load
- Area III for base load equipment

Real world market: Market failures in investment in situation w/o RES-E policy

1. Market failure in investing in the technology mix (nuclear, coal vs CCGT)

- Risks and price-making on electricity markets
 - Large upfront cost technologies are in the bottom of merit order
 - Dependence on the marginal price setting is highly risky for these
 « inframarginal » technologies
 - Carbon price uncertainty adds to price risks
- So the "marginal cost setting technology" (the CCGT) is facing the least market risks in liberalised markets

CCGTs have been almost the unique generation technology to invest in.

2. Market failure to guarantee capacity adequacy

Peaking units very capital intensive per MWh

Risks + missing money (price cap, TSO operating procedure)

Answer by capacity mechanisms: revenues for guaranteed capacity

Ambitious climate policies: market could not deliver

Decarbonation = need of capital intensive equipment (small sized and large sized renewables, CCS, new nuclear) to be developed

1. In theory increasing and predictable carbon price is supposed to be sufficient to give an advantage to low carbon technologies

But no investment in low carbon equipment triggered by carbon price

- imperfection of carbon price setting
- Even with credible and foreseeable carbon price 30-50 €/tCO2, not sure low carbon investment so easy

2. Need of long term arrangements with a neutral agency with two functions

- To guarantee revenues on long term (fixed cost recovery):
 - Risk to be shifted indirectly on consumers via public agency
 - Levy to compensate cost of the support
- To subsidize non commercially mature technologies

First problem: It distorts price signal for long term choice

Merit order effects

Higher price unpredictability and volatility

Deterrence to investment

in fossil technologies: (mid load, back up, peaking units)

- increasing need of capacity revenues by new capacity payment to restore the long term signal
- CRM to be conceived with forward long term contracts

Dynamic effects of self entertainment of RES:

- increased merit order effects
- W/0 long term arrangements (need to shift the risk on consumers):
 no more investment

Increased problem in the 2020's Long term effects of RES-E et LCT policies on marginal price

2nd Problem . The costs of the long term arrangements :magnitude? who pays?

- German Example :
 - levy equivalent to wholesale price
- Overcost increases not only with installed capacities, but with
 - Wholesale prices decrease
 - Quid when RES-E and LCT with low var. cost will be marginal?

1. Acceptability problem

Whole sale price decrease when retail price/tariffs increase Risk of political questioning of arrangements (importance of private contractualisation for credibility)

2. Distributional problem

Discretionary allocation of the overcost onto price-inelastic consumers (ex. Germany, France) or partly on public budget

Distorted allocation of long term costs

In the former vertically integrated utilities model

 Tariffs aligned on average cost for all the consumers

(eventual horo-seasonality with non linear tariffs with capacity price)

 Some cross- subsidisation for large consuming industries

(quite controlable)

In the market model with decarbonisation

Wholesale price (sourcing costs) + uniform levy for capacity + discriminatory levy for decarbonation policy

Huge implicit crosssubsidization (under political discretion)

A need of clarification:

Because it is not a simple subsidiization

2. To recognize the shift towards a new electricity model: an hybrid Planning & Market regime

Discrepancy between wholesale price and average generation cost is definitive

An hybrid Planning & Market regime

Auction/tender LT contracts for RES-E and low-C generation

Credible counterparty to LT contract, low interest rate

CfDs when controllable, FiTs when not

FITs/FIPs for small-size RES-E

Capacity mechanism

Free entry of fossil generation, bid for Long term capacity contract

Contracts, capacity payments, :Where is market?

Economic dispatching Valuation of flexibility services

Retail competition: a severe issue

Payment of the Cost of support by LT Contracts: uniform levy or not?

MARKET could be no MORE the only BENCHMARCK

Commission tentative to control energy & climate policy, via State aid control

In fact member states have moved to regain control of energy policies to realize their climate policy

- Development of different types of long term support to invest in capital intensive technologies Low carbon/RES-E
- example of British EMR

Reaction of EC in November 2013 : **Guidance to Member States on state intervention in electricity markets** to clarify EC objectifs.

In parallell review of EU Guidelines on State Aid for Environmental Protection, including now Energy for 2014-2020

Redefinition of the type of RES-E & Low Carbon technology support

Control of State Aids: becoming the key instrument of energy policy available to the Commission in the area of electricity

Review of the EU Guidelines on State Aid for Environmental Protection and now Energy (published in April 2014)

Areas reviewed

- 1. Harmonise and simplify rules
- 2. Energy infrastructure
- 3. System stability and generation adequacy: Capacity mechanism
- 4. Support to low-carbon energy sources
 - Renewables (RES)
 - CCS
 - : exclusion of nuclear technology,
- 5. Exemptions from taxes and other charges

(energy intensive sectors, granting them reductions on the charges levied to support RES)

On every issue, very strict normalisation and strict control imposition

- Irrelevance of "strong competition and market" beliefs
- Long term arrangements are state aid: allowance by Commission needed
- Risk management by long term arrangements is not really taken into account
- EC 's State aid approach ignores
 - the reality of failures of electricity markets coordination
 - The constraints to invest in capital intensive equipment peaking units, RES-E, large LCT
 - The learning investment constraints

Exemple of the recommandation on Revision of RES-E support

To be authorized, operating aids for RES should be:

- paid in from Feed-In Premiums (FiP)
- granted by technology neutral bidding process (to not distort competition)
- Technology neutrality
 - Exception for less mature technology

Comments on Feed in Premium:

Is exposure to market price the good answer?

- No real improvement of incentives to operational efficiency,
 - Variability incites to be operational during any time
- Incentive to cut wind generation when negative prices > premium
 - Do not solve the entire problem
- Long term
 - Exposure to longer term price signal by wholesale market if overcapacity
 - But is it so simple?
 - Market is totally distorted by RES-E enntries
- And more risks for developers for fixed costs recovery
 - Exposure to decrease of fuel cost and carbon costs (difficult to annticipate)
 - So higher risk premium (+3%), less investment: So higher cost of the policy per MW.
- Fine tuned FIT (or CFDs) with annual quantity control are better in this respect

Conclusion

Need a clear recognition of the change of the electricity market model

At this stage we are only with

- Unusefully restricting guidelines
- Communication « Delivering the internal electricity market and making most of the public intervention » is unsufficient

Need of a new directive to clarify the situation

- To recognize priority of long term objectives on market coordination
- To recognize the central place of planning beside a market with only secondary role
- To recognize long term contracts with neutral agency as a necessity, despite limitations to competition
- To recognize central buyer/ central risk manager (neutral agency)
- Policy cost to be paid by all the consumers : which rules of definition of the levy?

Such process should lead to change the « guidelines on Environment and Energy » 2014-2015

It will be a long long way...

Criteria introduced by the EC Guidelines on State aid for environmental protection and energy (April 2014)

Contribution to a well-defined objective of common interest

- The objective of the measure may vary but needs to be consistent with ENTSO-E adequacy analyses; and
- It should not contradict the objective of phasing out environmentally harmful subsidies.

Need for State intervention to be demonstrated

Impact of RES development, but also on remaining regulatory and market failures.

Appropriateness of the aid measure

The CM should be open to both existing and future generators, as well as storage or DSR; and should take into
account the potential contribution of interconnection.

Incentive effect

The aid should not change the behaviour of the market players.

Proportionality of the aid (aid to the minimum)

- A competitive bidding process is recommended to lead to reasonable rates or return; and
- The measure should be designed so that the price paid tends to zero when the level of capacity supplied is adequate

Avoidance of major undue negative effects on competition and trade between Member States

- There should be no discrimination aside technical performance required
- Operators from other member states should be allowed to participate where it is physically possible;
- Negative effects on the internal energy market should be avoided, e.g. price caps or bidding restrictions; and
- The measure should not reduce incentives to invest in interconnection or undermine generation investment.

Transparency of aid:

Need for easy access to all relevant acts and to pertinent information about the aid awarded thereunder.