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ANALYSIS AND FORECASTING OF ELECTRCITY PRICE RISKS WITH 

QUANTILE FACTOR MODELS 

 

Abstract: Forecasting quantile and value-at-risk levels for commodity prices is methodologically 

challenging because of the distinctive stochastic properties of the price density functions, volatility 

clustering and the importance of exogenous factors. Despite this, accurate risk measures have 

considerable value in trading and risk management with the topic being actively researched for better 

techniques. We approach the problem by using a multifactor, dynamic, quantile regression formulation, 

extended to include GARCH properties, and applied to both in-sample estimation and out-of-sample 

forecasting of traded electricity prices. This captures the specification effects of mean reversion, spikes, 

time varying volatility and demonstrates how the prices of gas, coal and carbon, forecasts of demand and 

reserve margin in addition to price volatility influence the electricity price quantiles.  We show how the 

price elasticities for these factors vary substantially across the quantiles and offer a new, useful synthesis 

of GARCH effects within quantile regression. We also show that a structural linear quantile regression 

model outperforms skewed GARCH-t and CAViaR models regarding the accuracy of out-of-sample 

forecasts of value-at-risk.   

 

1. INTRODUCTION  

For managers involved in risk and operations, as well as for regulators concerned with market 

surveillance, modelling and forecasting the tails of price distributions in traded markets may often be a 

more crucial activity than formulating central expectations. As a task, it is certainly the more 

methodologically challenging. Both the relative sparseness of the data in the tails and the extreme 

sensitivity of the results to misspecification in the functional form of the distribution create severe 

difficulties. Thus, robust parametric methods for specifying predictive distributions (eg Guermat and 

Harris, (2001), (2002)), as well as semiparametric formulations for estimating specific quantiles (eg Engle 
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and Manganelli (2004), Gerlach et al., (2011)), have characterised recent research. Ad hoc representations 

of skewed and fat-tailed properties have become particularly necessary in practice (Kuester et al. (2006)). 

In the context of forecasting volatility, or Value-at-Risk (VaR) calculations (eg Hong and Liu, 2009; 

Glasserman et al, 2000) the increasing range of pragmatic approaches to this problem has inevitably led to 

hybrid and combining proposals in attempts to improve out-of-sample predictive performances (Taylor et 

al, 1998, 1999; Jeon et al, 2013). Evidently there is a need in practice to develop more accurate forecasts 

of tail risk rather than relying upon what the stylised theoretical models of the price formation processes 

generally provide.  

Quantile regression, following Koenker and Basset (1978), has promised several attractive features in this 

respect. Firstly, it offers a semiparametric formulation of the predictive distribution, the quantiles of 

which can be efficiently estimated with distinct regressions. It is possible therefore to have a fine 

resolution of the tail characteristics in terms of empirical estimates for the required quantiles. 

Fundamental factors can be specified in the quantile regressions, which may exhibit different coefficients 

according to the quantile levels. This feature offers greater predictive insights and accuracy. Secondly, the 

conditional nature of the regressions is valuable for the explicit representations of varying dependencies 

in scenario tree creation (as may be required, for example, in stochastic optimisation models for risk 

management, eg Alexander and Baptista, 2004). Thirdly, the nonparametric way in which  a tail 

distribution can be developed from separate quantile models offers an alternative perspective to multi-

process modelling in the contexts where modellers may be tempted to use mixtures or regime-switching 

to capture different price formation process for normal and extreme events. Instead of an unobserved 

latent variable, such as in Markov regime switching (eg, Karakatsani et al., (2008)) and a restriction in the 

number of regimes, such as in smooth transition logistic regressions (eg Chen et al (2010)), quantile 

methods inherently associate a separate regime with each quantile. 

One of the most critical areas for the use of well estimated tail probabilities is in VaR calculations, which 

are specified as quantiles, and have therefore motivated substantial research in finding effective quantile 
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forecasting methods (eg Taylor (2008); Füss, (2010)). The methodological benchmark in theory appears 

to be the conditional autoregressive value at risk (CAViaR) approach inspired by applying GARCH ideas 

to quantiles, whereby the quantiles are modelled conditionally as autoregressive processes (see Engle and 

Manganelli (2004), Taylor (2005)).  These have proven to be very successful in predicting VaR in 

research studies, but (unlike GARCH models) may be difficult to apply in practice and appear to have 

acquired only limited implementation in financial risk management. Furthermore, in situations where 

potential exogenous factors are expected to be significantly distinct in their effects across the quantiles, 

the CAViaR methodology, unlike quantile regression, has lacked this extra specification, and exogenous 

factors have only been formulated to estimate the conditional mean.  

In this respect, spot prices in wholesale electricity markets present one of the most demanding application 

areas for comparative methodological research on this theme, and offer a rich set of known exogenous 

factors that may have different effects across the quantiles. Power prices are characterised by high 

volatility, positive skewness, substantial volatility clustering and large spikes. Furthermore, evidence for 

the substantial impact of exogenous fundamental drivers, and their nonlinear response functions with 

respect to demand, excess capacity and fuel prices, is well established (Chen et al (2010)). Forecasting tail 

probabilities and VaR, however, despite its widespread appeal and use in energy trading, remains under-

researched and retains many open questions. Whilst the nonlinear properties of exogenous variables have 

motivated interest in regime switching models, their out-of sample performances have not matched their 

intuitive and highly significant in-sample fitting (eg Kosater et al (2006), Misorek et al., (2006)).  

Evidence on the value of regime-switching models for forecasting is mixed and seems to suggest that the 

evolutionary nature of power price formation requires more robust methods.  It is an open question, 

therefore, whether quantile methods can be developed to provide this capability. 

Prediction of VaR out-of-sample for energy commodities can be found in Aloui (2008), Chan et al (2006), 

Füss et al. (2010), Giot et al (2003), and Hung et al. (2008). The majority of these studies use various 

GARCH models with different specifications of the innovation processes, the main conclusions being that 
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GARCH models need to have fat tailed and possibly skewed distributions to work well. Quantile 

regression approaches do not yet appear to have been applied to energy commodity prices. Furthermore, it 

appears to follow both from the evident GARCH properties in power prices suggesting a persistence of 

shocks, and the in-sample regime-switching models between electricity fundamentals suggesting the need 

to accommodate varying effects of exogenous factors, that there is a prima facie case for examining the 

joint specification of both fundamental factors and volatility as explanatory factors. As Xiao and Koenker 

(2009) observe, this presents a complicated nonlinear quantile formulation which is elusive to 

conventional estimation. One approach taken by Chen et al (2012) uses a smooth transition regime 

switching GARCH model, with innovations modelled as skewed Laplace distributions to facilitate the 

quantile estimations. Using Bayesian estimation, this succeeds in estimating quantile regression under 

conditions of heteroscadicity and regime switching, but applications with more than one exogenous factor 

remain challenging to estimate. We adopt an alternative two stage approach of first estimating the 

GARCH process with a factor model for the price levels, and then augmenting a multifactor model for 

quantiles with this GARCH process (Xiao and Koenker, 2009, demonstrated the convergence of this 

process in the univariate case). The benefit of this two stage approach that it preserves a more transparent 

representation of volatility in its conventional manner, but still isolates how, alongside other factors, its 

impact varies by quantile.  

This approach is tested against a range of best-practice alternatives under the most stringent condition of 

the evening peak (6:30-7:00pm), which is the most volatile, skewed and spiky trading period in the 

British power market. The British market is a transparent one with useful exogenous day-ahead 

information available to market participants, and, being well-established, there is a long time series 

provide an extensive out-of-sample analysis of day ahead forecasts. With this methodological proposal, it 

is important to benchmark this quantile regression approach against the most appropriate GARCH 

models, typical in practice, and also the potential use of CAViaR models in this context. We provide 
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convincing results that the quantile factor model with volatility provides better validated and more 

accurate forecasts than conventional alternatives. 

In the next section we provide a short review of the price formation properties in wholesale electricity, 

motivate the use of the exogenous variables and indicate why they may be nonlinear. Then, we describe 

the data, followed by the methods. In-sample and out-of-sample results are then reported and a 

concluding section summarises the key research contributions. 

 

2. ELECTRICITY PRICE FORMATION FUNDAMENTALS 

Electricity is a flow, rather than a stock commodity: it is produced and consumed continuously and 

instantaneously. Traded physical products are therefore defined and sold in the form of metered contracts 

for the constant delivery of a specified amount of power over a specified period of time, eg one megawatt 

for one hour (MWh). Most “spot” markets deal in such hourly products, although some, eg Britain and 

Australia, have finer granularity at half-hourly intervals. These hourly (or half-hourly) spot prices emerge 

either from an auction process whereby generators and retailers make offers and bids (which may be held 

once on the previous day to set all hourly prices for the subsequent day) or continuous trading on an 

exchange platform from a day ahead until a particular time before actual delivery (eg an hour in Britain). 

Spot price formation itself, because consumers are price inelastic in the short term and cannot store 

electricity once generated, is mainly a function of the demand, technology and competition amongst 

generators.  For a particular level of demand at a particular time, there will be a stack of generating 

technologies available, and the market-clearing price, is usually taken as the offer price of the most 

expensive plant needed over that trading period. Thus, if the market were competitive, and generators 

offered at short-run marginal costs, market price volatility would be envisaged as the projection of 

demand volatility on to the supply function offered by the generators (Stoft, 2002). Given the various 

plant technologies available for dispatch, differentiated in terms of costs and operational constraints, this 
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short-run supply cost function is intrinsically steeply increasing, discontinuous and convex. Hence there is 

an induced skewness from demand volatility into price volatility.  

In the presence of these characteristics, and with the negligible demand elasticity in the short term, spot 

prices are sensitive to real-time uncertainties, such as demand shocks and plant outages.  Thus, 

expectations of spot prices involve at least considerations of the underlying fuel (for short term marginal 

costs) and the reserve margin (for scarcity pricing above marginal cost). Moreover, as almost all 

electricity markets are oligopolies, at times of scarcity, when the reserve margin (available supply minus 

demand) is low, those generators with market power may offer and create market prices substantially 

above marginal costs (e.g. Wolfram (1999); Wolak and Patrick (1997)).  This creates a further 

behavioural and possibly nonlinear element to extreme price formation. The nonlinear implications of this 

price formation process for the exogenous factors in a quantile regression model suggest the following 

functional form propositions: 

1. Demand elasticity is positive and increases nonlinearly with higher quantiles. To the extent that 

the supply function is convex in available capacity, we would expect to see a positive price 

coefficient to demand with higher elasticity at higher prices. Thus, one should find elasticity increases 

nonlinearly with higher quantiles.  

2. Reserve margin elasticity is negative and decreases nonlinearly with higher quantiles. Scarcity 

induces a propensity for generators to offer at higher prices. Oligopolies characterize power markets 

and their market power increases with a declining reserve margin. Extreme scarcity can create a 

residual monopolist. Furthermore, reserve margin shocks may be due to unusual outages in generating 

capabilities and, once it is known to the market that a generator is short, this may induce a selling 

squeeze by the other generators and hence higher prices. 

3. Fuel (including carbon allowance prices) elasticities will be positive but may have nonlinear, 

non monotonic functional relation across quantiles. Even though power prices in a predominantly 
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thermal system will consist, at the market clearing price, of fuel prices including carbon costs (where 

levied, eg Bunn and Fezzi, 2007), plus the generator’s profit margin, to the extent that changes in the 

fuel and carbon prices may cause a change in the merit order, a nonlinear response to fuel and carbon 

price changes could be expected, but this could also be non monotonic. For example if gas prices go 

down, gas generation will become baseload, increasing its low quantile coefficients, with gas no 

longer affecting the high quantile peakload prices. But if gas prices are higher than coal, and if 

scarcity in the carbon allowance market means that carbon prices are determined by fuel-switching 

from coal to gas, this may neutralize the impact of gas-coal price discrepancies. On the other hand, 

low carbon prices, that do not cause fuel switching, will have a decreasingly positive effect as price 

rise, if coal is cheaper than gas, and an increasingly positive effect if gas is cheaper than coal (since 

the carbon intensity of coal is higher). It is clear therefore that fuel prices will have an idiosyncratic 

pattern of influence on power prices that will not be linear, and indeed is likely to change over time 

according to movements in the coal, gas and carbon markets. 

4. Adaptive behavior (manifest as a lagged price) elasticity will be positive and nonlinear across 

quantiles. Adaptive behavior will be manifest in terms of reinforcing previously successful offers. 

High prices will tend to be followed with high prices. Furthermore, if there is an element of repeated 

gaming in power markets, as often suggested (Rothkopf, 1999), signaling between market agents will 

encourage this and motivate a positive coefficient for lagged prices. This will become stronger at 

higher quantiles, as the market becomes less competitive and gaming more possible and plausible. 

 

3. DATA  

The British electricity market, liberalised in the early 1990s, is currently competitive, and perhaps one of 

the most mature wholesale power markets in the world. In March 2001 the New Electricity Trading 

Arrangement (NETA) were implemented and introduced bilateral and voluntary forward trading in 
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England and Wales to replace the compulsory, day-ahead uniform auction Pool that had existed since 

1990. In April 2005 the British Electricity Trading and Transmission Arrangement (BETTA) extended 

this to include Scotland, whilst the EU carbon emissions market started at the beginning of that year. 

More specifically, the design of the reformed British market is based upon fully liberalised trading and 

plant self-scheduling, and hence, in this voluntary bilateral environment, most energy is traded with 

forward contracts. Close to physical delivery, agents fine tune their positions, from blocks (peak and 

baseload) to half-hourly resolutions, in the Power Exchanges that have emerged. These operate 

continuously up to 1 hour prior to each half-hourly physical delivery period, a point defined as Gate 

Closure, and are effectively the spot markets. After Gate Closure, the System Operator administers a 

market for system balancing, and invites offers and bids for load increases or decreases in real time.  

In the British market, the main reference for spot trading has been the UKPX (now APX) power 

exchange. The spot prices are volume-weighted averages of all trades ahead of each trading period. Each 

day consist of 48 trading and load periods. The UKPX started its operation in March 2001. Compared to 

OTC contracting, UKPX is an anonymous exchange market place for trading and clearing. There are no 

locational prices in the British market and congestion, although dealt with in the real time system 

balanced by the system operator, does not contaminate the UKPX energy prices.  

Our data spans 8th June 2005 to 4th September 2010. We selected period 38 for this study as the most 

challenging time series of prices for comparative analysis. Of all periods, this exhibits highest volatility 

and greatest skewness. It is the evening peak when household activities and the onset of darkness create 

the highest prices and, if supply shortages happen, so do spikes. Figure 1 shows the development of the 

UKPX period 38 prices together with the day ahead spot prices of gas, coal, and carbon, as well as the 

day ahead demand and reserve margin forecasts as conveyed to the market by the system operator.  

The dependent variable used in the analysis is: 
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UKPX Period 38 Price.  UKPX is the day-ahead and on-the-day power exchange, allowing high 

frequency (half hourly) trading, up to an hour before real time. Period 38 (18:30 to 19:00) 

represents “super” peak demand. Prices are quoted in £/MWh and represent the volume weighted 

prices for this period as cleared on the exchange in the preceding 24 hours. 

The factors used in the analysis are all known to the market before the power exchange closes for the 

trading period concerned, and can therefore be considered exogenous market information for the power 

price formation: 

Lagged UKPX Period 38 prices. These are the UKPX Period 38 prices lagged by one day. 

NBP Gas Price. We use daily UK natural gas one-day forward price, from the main National 

Balancing Point (NBP) hub. The price is quoted in £/BTU (British Thermal Unit).   

Coal price. We use the daily steam coal Europe-ARA (Amsterdam, Rotterdam, and Antwerp) 

index, taking into account the $/£ rate.  

Carbon emission price. We use the EEX-EU daily carbon emission allowance one year forward 

price taking into account the €/£ rate. 

Demand forecast. This forecast is made available by the System Operator for each half-hourly 

trading period. In our study we use the period 38 demand forecast for the next day. Since it is 

released to the market at 18:17, one operational day ahead of closing prices, it reflects 

information available to participants and avoids the endogeneity issue of using actual demand. 

Reserve margin forecast (indicated margin). The System Operator also makes forecasts of the 

available reserve margin for each half-hourly trading period. This is defined as the difference 

between the sum of the maximum available output capacities, as initially nominated by each 

generator prior to each trading period, and the demand forecast described above. In our study we 

use the period 38 reserve margin forecast, released at 18:16 for the next day. 
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Figure 1 (upper left exhibit) displays the period 38 price profile reflecting the “super peak” period with 

distinct demand, costs and operating constraints.  The figure reveals typical spot electricity price features 

of spikes, mean reversion, seasonality, high (and time varying volatility). In Table 1 we present 

descriptive statistics that confirm these characteristics with a high price standard deviation, substantial 

skewness and kurtosis, rejection of normality according to the Jarque-Bera test, rejection of unit roots 

according to the ADF test and clear signs of positive serial correlation at different lags according to p and 

Q tests. We also show the empirical quantiles at 1%, 5%, 10%, 90%, 95%, and 99% levels which reveal 

high price risk in particular for consumers or traders having a short position in the period 38. 

 

4. PRICE DISTRIBUTION MODELLING AND FORECASTING 

In this Section we briefly describe the theoretical framework.  

4.1 QUANTILE REGRESSION MODELS 

Quantile regression methods develop explicit models for specific quantiles of the distribution of a 

dependent variable, using exogenous variables with different coefficients at each quantile.  Quantile 

regression was introduced by Koenker and Bassett (1978) and is fully described in Koenker (2005) and 

Hao and Naiman (2007). Applications in financial risk management can be found in Alexander (2008).  

Let q є [0,1] be the quantile, e.g. 1%, 5%,…., 99%.  Let 
t

Y  be the dependent variable (e.g. log of el. price) 

and 
t

X  a d-dimensional vector of explanatory variables (e.g. log of the gas price, log of demand etc.), 

including a constant. The conditional quantile function is given by  

( )|
q t t t q

Q Y =X X β     (4.1) 

in which, as implemented in several software packages (eg Eviews, R, Stata), the parameter qβ  is derived 

according to the following optimization:  



- 12 - 

 

1

arg min ( )( )          

where

1     if 
.

0    otherwise

t t q

q

t t q

T

Y t t q

t

t t q

Y

q Y

Y

≤
=

≤

− −

≤
= 


∑ X β
β

X β

1 X β

X β
1

               (4.2) 

Details on estimating standard errors for coefficients, inference and goodness of fit can be found in 

Koenker and Machado (1999).  To specify a model that incorporates the time series aspects, let tX&  be a 

subset of information variables that become available at time t and 1t−X%  be variables { }
1

0

t

j j

−

=
X& , so that 

( )1,
t t t−=X X X% & % . Chernozhukov and Umantsev (2001) formulate the following general quantile 

regression model 

( ) ( )1 ,q t t q q tQ Y f qγ= +X β X& %

   
(4.3) 

 

Here ( )1f ⋅  and ( )2f ⋅  represents functions of the information set. Models of this form are useful as 

parsimonious regressions that represent VaR/quantiles (Chernozhukov and Umantsev (2001)). One 

example involves the model 

( ) ( )1 , |
t t t t

f X q Y Xσ µ= −% % , 

where ( )2 |
t t t

Y Xσ µ− %  is the conditional variance of the de-meaned 
tY . It can take the form of an 

ARCH model, see Koenker and Zhao (1996). As suggested by Chernozhukov and Umantsev (2001), a 

simpler strategy is to first estimate ( )2 |
t t t

Y Xσ µ− %  via a GARCH model and use it as a regressor in the 

linear model. A similar approach is also done in Xiao and Koenker (2009). They first use quantile 
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regression to estimate the volatility, and then include lagged volatility and the lagged dependent variable 

as explanatory variables in the linear quantile regression model. 

The CAViaR class of models also falls into this framework. Let 
t

ε  be the de-meaned process, 

t t t
Yε µ= − . Engle and Manganelli (2004) suggest four different CAViaR specifications, all of which are 

first-order autoregressive. The Indirect GARCH(1,1) CAViaR model, 

( ) ( )( ) ( )( )
0.5

2 2

1 2 1 3 11 2 0.5
q t q t t

Q I q Qε α α ε α ε− −= − < + + .  (4.4) 

The Symmetric Absolute Value CAViaR model, 

( ) ( )1 2 1 3 1q t q t t
Q Qε α α ε α ε− −= + + .    (4.5) 

The Asymmetric Slope CAViaR model, 

( ) ( ) ( ) ( )1 2 1 3 1 4 10.5 0.5
q t q t t t

Q Q I q I qε α α ε α ε α ε− − −= + + ≥ + < .  (4.6) 

The Adaptive CAViaR model, 

          
( ) ( ) ( )( )( )

1

1 1 1 11 exp
q t q t t q t

Q Q q K Qε ε α ε ε
−

− − −

  = + − + −   
. (4.7) 

Here ( )q t
Q ε  is the q-percentile of the de-meaned price distribution at time t, I is a indicator function and 

K is a smoothing parameter which may be chosen or estimated.  Quantile regression models are robust to 

distributional misspecifications, as no explicit distributional assumptions need to be made. In fact, 

CAViaR models can be used for situations with constant volatilities but changing error distributions, or 

situations in which both error densities and volatilities are changing (Engle and Manganelli (2004). 
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4.2 FULLY PARAMETRIC LOCATION-SCALE MODELS  

Fully parametric models are among the most commonly used market risk measures, and are typically 

based on the assumption that the price distribution can be described by a parametric density function 

together with a model for the conditional variance. Popular specifications of the conditional density are 

Gaussian or skew Student-t, and a GARCH model for the conditional variance. As a methodological 

benchmark for the quantile regression models, we use location-scale models where the volatility 

dynamics follows a GARCH(1,1) structure. That is, we assume that the distribution of the dependent 

variable can be expressed in the form 

t t t t t t
Y zµ ε µ σ= + = +     

     (4.8) 

Here tµ
 
is the mean of 

tY , 
2 2

0 1 1 2 1t t tσ α α σ α ε− −= + + , with Zf  is a zero-location, unit-scale probability 

density that can have additional shape parameters. The one-step forecast of the q-percentile of 
t

Y  based 

on information up to time t is given by 

 

where ( )qQ z  is the q-percentile implied by Z
f . Approaches differs with respect to the specification of 

the conditional mean, t
µ , and conditional density Z

f . Note that the Indirect GARCH(1,1) CAViaR 

model (4.4) corresponds to a model on the form given by (4.8), but with zero location parameter, 0
t

µ ≡ , 

and an iid error distribution. 
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4.3 FORECASTING  

To validate the predictive performance of the models, we consider the unconditional test of Kupiec 

(1995), the conditional coverage test of Christoffersen (1998) and two backtests based on regression. The 

Kupiec (1995) test is a likelihood ratio test designed to reveal whether the model provides the correct 

unconditional coverage. More precisely, let { }
1

T

t t
H

=
be an indicator sequence where t

H  takes the value 1 

if the observed price, t
Y , is below the predicted quantile, Qt ,at time t  

      

1 if  

0 if  Y

t t

t

t t

Y Q
H

Q

<
= 

≥
.    (4.9) 

Under the null hypothesis of correct unconditional coverage the test statistic is  

 

where 1n  and 0n  is the number of violations and non-violations respectively, expπ  is the expected 

proportion of exceedances and ( )1 0 1/obs n n nπ = +  is the observed proportion of exceedances. In the 

Kupiec (1995) test only the total number of ones in the indicator sequence { }
1

T

t t
H

=
 counts, and the test 

does not take into account whether several quantile exceedances occur in rapid succession, or whether 

they tend to be isolated. Christoffersen (1998) provides a joint test for correct coverage and for detecting 

whether a quantile violating today has influence on the probability of a violating tomorrow. The test 

statistic is defined as follows: 
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where ijn  represents the number of times an observations with value i is followed by an observation with 

value j. ( )01 01 00 01/n n nπ = +   and ( )11 11 11 10/n n nπ = + . The 
cc

LR  test is only sensitive to one 

violation immediately followed by another, ignoring all other patterns of clustering.  

 

The Kupiec (1995) and Christoffersen (1998) tests only use information on past quantile violations, and 

therefore might not have sufficient  power to detect misspecified risk models. To increase the power we 

may also want to consider whether violations can be predicted by including other data in the information 

set such as past returns, estimated volatility or the quantile estimate for the period itself. The advantage of 

increasing the information set is not only to increase power, but also to help us understand the areas in 

which the risk model is misspecified (Christoffersen (2010)). We consider the following two regression 

based backtests, similar to Engle and Manganelli (2004); 

0 1 1 2 2 3 3 4 4t t t t t tH H H H Hβ β β β β ε− − − −= + + + + +     (4.10) 

0 1 1 2 2 3 3 4 4 5t t t t t t t
H H H H H Qβ β β β β β ε− − − −= + + + + + + .  (4.11) 

Here the indicator variable 
t

H  is defined in Equation (4.9), and 
t

Q  denotes the quantile estimate itself. In 

Equation (4.10) we test the hypotheses 0 1 2 3 4: 0H β β β β= = = =  against the alternative that at least 

one of 1 2 3 4, , ,β β β β  is significant different from zero using a standard F test. In Equation (4.11) we test 

0 5: 0H β =  against the alternative that quantile exceedances are linked to quantile forecast using a 

simple t test.   
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5. EMPIRICAL ANALYSIS 

First we conduct an empirical analysis of the price sensitivities with respect to the factors described in 

Section 3. Then we evaluate the ability of different methods to forecast the tails of the price distribution. 

5.1 IN SAMPLE MODELLING USING QUANTILE REGRESSON  

We perform in-sample analysis using all data from 9th June 2005 to 4th September 2010 which consist of 

1915 observations for the period 38 UK electricity prices. The elasticities of lagged prices, lagged 

gas/coal/carbon prices, forecast of demand and reserve margin are investigated at the quantiles 1%, 5%, 

10%, 25%, 50%, 75%, 90%, 95%, and 99%. In order to variance-stabilise the data and interpret all 

parameters as elasticities, we log-transform both the dependent and independent variables, as in equation 

(5.1).   

( )

( )
0 1 1 2 1 3 1 4 1

5 6 7

lnP38 lnP38 lnGas lnCoal lnCarbon

                      lnDemand lnReserve  + lnP38                               (5.1)

q q q q q

q t t t t t

q q q

t t t t

Q β β β β β

β β β σ µ

− − − −= + + + + +

+ −
 

Here ( )2 lnP38
t t

σ µ−  is the conditional variance of the de-meaned log prices, and is estimated using 

Model 4 described in Section 5.2.1 below. The index q refers to the specific quantile. All calculations are 

performed in EViews (The QREG procedure). 

 In table 2 we show the parameter values at different quantiles for model (5.1). The explanatory power 

measured by Koenker and Machado (1999) pseudo R-squared is in the range of 49% to 59%.  

Lagged prices. The significance and sign of the lagged electricity price is consistent with mean-reversion 

(positive serial correlation for prices and negative serial correlation for returns). Except for the 95% and 

99% quantiles we find increasing serial correlation for higher prices.  

Gas prices. The gas price elasticities are generally positive in line with the previous discussion of supply 

function fundamentals. Using logtransform prices, the coefficients are in the range of 0.19-0.31 and all 
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significant. There is no clear pattern in the elasticity values across the different quantiles. This is 

consistent with our previous proposition about the potentially nonmonotonic effects of fuel prices.   

Coal prices. The coal price elasticity’s are generally positive and also here in line with the previous 

discussion of supply function fundamentals. The sensitivities values are generally higher than gas.  Low 

and moderate quantiles are more sensitive than high quantiles, which may reflect the fact that low prices 

are more likely to be driven by fuel fundamentals than high prices, where scarcity may be more 

determinate. 

Carbon emission prices. The carbon emission price elasticity’s are generally positive. There magnitude 

is rather low (in the 0.01 to 0.07) range, decreasing with price levels.   

Volatility. The coefficient of volatility changes sign from negative (low prices) to positive (high prices). 

During times of low prices, an increase in volatility tends to drive prices even lower than we can explain 

using fundamental factors alone. When prices are high, an increase in volatility tends to drive prices even 

higher. This suggests that both low and high electricity prices overshoot the fundamentals when the price 

uncertainty is high, which is a remarkable but plausible observation. 

Demand forecast. The generally positive and increasing sensitivities with higher prices reflects the 

intuitive price and demand relationships from the increasing supply function discussed earlier. The 

elasticity’s are all significant apart from the 1% and 99% quantile for logtransform prices.  

Reserve margin forecast. The negative signs for margin intuitively reflect the fact that the lower reserve 

margin, the higher the price becomes. The effect is also increasing with higher prices as one would expect 

according to the supply function and scarcity considerations. All parameters are significant. 

It should be noted that other exogenous variables (such as several seasonal dummies and trading volume) 

where tested initially but where not found significant. Seasonal effects are to a large extent captured in 

forecasted demand.  
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5.2 FORECASTING TAIL PROBABILITIES  

VaR modelling requires accuracy in the forecasting of the tails of the price density rather than in the main 

body of the price distribution.  

5.2.1 FULLY PARAMTRIC LOCATION SCALE-MODELS 

From the fully parametric location-scale models we use two different conditional densities; Gaussian and 

skew Student-t. In addition, we consider two different specifications of the conditional mean; (1) t
µ

 
is a 

linear function of the lagged prices, and (2) t
µ

 
is a linear function of the lagged price,

 1ln
t

P− , and the 

factors described in Section 3. 

Model 1-2: 

0 1 1 2 2 3 3 4 4

5 5 6 6 7 7 t

lnP38 lnP38 lnP38 lnP38 lnP38

               lnP38 lnP38 lnP38         

t t t t t

t t t t
z

β β β β β

β β β σ

− − − −

− − −

= + + + + +

+ + +  

Here the volatility follows a GARCH(1,1) process,
  

2 2

0 1 1 2 1t t tσ α α σ α ε− −= + + , and the conditional 

density ( )Zf ⋅
 
is set to Gaussian (Model 1) and skew Student-t (Model 2), respectively. 

Model 3-4: 

0 1 1 2 1 3 1 4 1

5 6

ln P38 lnP38 lnGas lnCoal lnCarbon

              lnDemand lnReserve

t t t t t

t t t t
z

β β β β β

β β σ

− − − −= + + + + +

+ +
 

As above,
 

2 2

0 1 2 1t t tσ α α σ α ε −= + + , and
 

( )Z
f ⋅

 
is Gaussian (Model 3) and skew Student-t (Model 4), 

respectively . The estimation of models 1-4 is done in two steps. First the β -parameters are estimated 

using an ordinary least square (OLS) regression where log prices is regressed against explanatory 

variables. Then a GARCH(1,1) model is fitted to the residuals from the regression. 
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5.2.2 QUANTILE REGRESSION MODELS 

From the quantile regression class of models we use the following functional forms:  

Model 5: A linear model with only lagged prices as explanatory variables 

( ) 0 1 1 2 2 3 3 4 4

5 5 6 6 7 7

lnP38 lnP38 lnP38 lnP38 lnP38

                      lnP38 lnP38 lnP38         

q q q q q

q t t t t t

q q q

t t t

Q β β β β β

β β β

− − − −

− − −

= + + + + +

+ +
 

Model 6: A linear model with lagged price and fundamental explanatory variables 

( ) 0 1 1 2 1 3 1 4 1

5 6

lnP38 lnP38 lnGas lnCoal lnCarbon

                      lnDemand lnReserve                                                

q q q q q

q t t t t t

q q

t t

Q β β β β β

β β

− − − −= + + + + +

+
 

Model 7: A linear model with lagged price, fundamental variables and volatility as explanatory variables 

( )

( )
0 1 1 2 1 3 1 4 1

5 6 7

lnP38 lnP38 lnGas lnCoal lnCarbon

                      lnDemand lnReserve + lnP38

q q q q q

q t t t t t

q q q

t t t t

Q β β β β β

β β β σ µ

− − − −= + + + + +

+ −  

Here ( )2 lnP38
t t

σ µ−  is the conditional variance of the de-meaned log prices, and is estimated using 

Model 4 described above. That is, the estimation is performed in two steps; first a GARCH models is used 

to estimate the volatility, next, treating volatility as an observed variable, the linear quantile regression is 

estimated.  

Models 8-11: 

( )

( )
0 1 1 2 1 3 1 4 1

5 6

lnP38 lnP38 lnGas lnCoal lnCarbon

                      lnDemand lnReserve +      

q t t t t t

t t q t

Q

Q

β β β β β

β β ε

− − − −= + + + + +

+
 

Here the error terms, tε , follows a CAViaR process. More precisely, in Model 8 an indirect 

GARCH(1,1) CAViaR model is chosen for t
ε , in Model 9 a symmetric absolute value CAViaR model, in 
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Model 10 a asymmetric slope CAViaR and finally Model 11 the adaptive CAViaR model is chosen for 

the error term (for the adaptive model, we follow Engle and Manganelli (2004) and set K = 10). 

Models 8-11 are estimated in two steps: Since conventional CAViaR specifications do not include 

exogenous variables, we proceed by first estimating the β ’s using OLS regression, and then a CAViaR 

model is fitted to the residuals from the regression. Estimation of the CAViaR models is complicated by 

the fact that the quantiles are latent and are dependent on the unknown parameters. We use the Matlab 

code of Manganelli (2002) to estimate the CAViaR models. An alternative estimating strategy is Markov 

Chain Monte Carlo, as in Gerlach et al. (2011).  

5.2.3 EMPIRICAL RESULTS 

It is important to validate and compare the models in an out-of-sample forecasting context, as it is well-

known that elaborate, well-specified ex-post models may not forecast better than simpler, more robust 

models, because of overfitting and/or evolutionary changes in the price formation process. In contrast, the 

usefulness of well specified ex-post models is more often argued for their value in ex-post market 

performance analysis, e.g., market monitoring, and ex ante, for facilitating multiple scenario simulations, 

e.g., for risk management.  The ultimate aim is of course to have a well specified model both in-sample 

and out-of-sample. We use two approaches for in-sample and out-of-sample:  

Expanding window (EW) in sample. Here we estimate the models using the first 730 observations. We 

then forecast quantiles (1%, 5%, 10%, 90%, 95%, and 99%) of observation 731. Thereafter we estimate 

the models with the first 731 observations. We then forecast quantiles of observation 732 and so on. At 

the end, we estimate models with the first 1914 observations and forecast quantiles of the last observation 

1915. That will leave us with 1915-730 = 1185 observations to verify tail forecasting performance. 

Rolling window (RW) in sample. We start out estimating the models using the first 730 observations. 

We then forecast quantiles (1%, 5%, 10%, 90%, 95%, and 99%) of observation 731. Thereafter estimate 

the models using observation 2 to 731. We then forecast quantiles of observation 732 and so on. At the 
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end, we estimate the models using observation 1184 to 1914 and forecast quantiles of the last observation 

1915. Again, this will leave us with 1915-730 = 1185 observations to verify tail forecasting performance. 

Tables 3-5 report the percentage of times the observed price is below the estimated quantile, the p-values 

for the unconditional coverage test by Kupiec (1995), the p-values for the conditional coverage test by 

Christoffersen (1998), and the p-values from the two different regression based tests defined by (4.10) 

and (4.11). Note that the 5% significance tests have the null hypotheses of correct %, so ideally the actual 

exeedences should not be significantly different. We also record the average values of the quantile 

estimates. A good risk model method should not only pass the calibration tests described above, it should 

also provide narrow prediction intervals, as the width of the intervals is linked to the precision of using 

the method in practice. Gneiting et al (2007) refer to “sharpness” as well as “calibration” as desirable for 

the assessment of density forecasts. The overall results from the tests suggest that the parametric location-

scale models based on Gaussian distribution are seriously flawed, failing about half of the tests. Using a 

skew Student-t distribution leads to clear improvements, and the models using this distribution estimated 

under a rolling window are generally the the best performing models. The linear quantile regression 

models including only lagged prices (Model 5) do not provide satisfactory forecasts of the quantiles, 

showing performance on par with the Gaussian based parametric location-scale model. Introducing 

fundamental factors in the linear quantile regression model (Model 6) significantly improves the results, 

underpinning the importance of these risk factors in predicting the tail probabilities of the electricity spot 

price. Adding volatility as an explanatory variable (Model 7) improves the tail predictions further, 

indicating that volatility is not adequately encapsulated through the factors in the fundamental model. The 

CAViaR models shows relatively good results, with the indirect GARCH (Model 8) and Asymmetric 

slope (Model 10) providing the best forecasts, followed by the Symmetric absolute value (Model 9) and 

Adaptive CAViaR (Model 11). 
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Going into more details for each of the tests, we find, using a 5% significance level and an expanding 

window, that only the linear quantile regression model with fundamental factors and volatility as 

explanatory variables (Model 7) provide the correct percentage of exceedences. Fitting the models to a 

rolling window generally improves the unconditional coverage, indicating that the data generating process 

may change over time. Using a rolling window, Model 4, 6, 7, 8 and 11 all provide correct unconditional 

coverage. Examining the clustering of exceedances of the quantiles, we find that the location scale 

GARCH models all perform very well on the regression based test defined by (4.10). The joint test of 

unconditional coverage and independence of Christoffersen (1998) shows less encouraging results, but 

this is generally caused by incorrect percentage of violations. The same conclusion can be drawn for the 

CAViaR models except the Adaptive model, which shows more clustering than the other CAViaR 

models. This is not surprising, since the Adaptive model increases the quantile by the same amount 

regardless of whether the size of the residual term exceeded the quantile by a small or a large margin. The 

linear quantile regression models, especially the model including only lagged prices, show in general 

somewhat more clustering than the other methods. The reason may be the same as for the Adaptive 

model; the quantile does not depend directly on the last residual term. We also test whether the 

exceedances of the quantiles are independent of the conditional quantile estimator. The results suggests 

that both the location scale GARCH and CAViaR models suffer from exceedances being correlated with 

the forecast of the quantile itself, especially in the lower quantiles (1%, 5% and 10%). The results from 

the linear quantile regression models are more promising, particularly for the models including 

fundamental information. 

 

Turning to the width of the predictions intervals, we find that the linear fundamental quantile regression 

models generally give the narrowest prediction intervals. That is, on average they provide relatively high 

estimates of the low quantiles (1%, 5% and 10%) and relatively low estimates of the high quantiles (90%, 

95% and 99%). Since the precision and value of implementing the VaR method is linked to width of the 
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intervals, our results suggest that the linear fundamental quantile regression models generally outperform 

the other models when it comes to the value of using the methods in practice.  

 

The motivation for comparing an expanding and rolling estimation is to provide some evidence whether 

the data generating process changes over time. The electricity price in 2010 may have different dynamics 

compared to the dynamics in 2005. Using both an expanding and rolling window gives some indication if 

the methods we are testing are sensitive to the sample size chosen. The quantile forecasts from the 

parametric location-scale models show generally a slight improvement using a RW compared to using an 

EW. For the linear quantile regression the situation appears to be the opposite, with a tendency to more 

clustering of exceedances using a RW. All CAViaR models except the Adaptive model seem to perform 

slightly better using an EW. The reason may be due to data scarcity in estimating the extreme tails of the 

distribution. Chernozhukov and Umantsev (2001) observe that data scarcity problems are amplified by the 

presence of covariates, and that point estimates provided by regression quantiles can be baised in the tails.  

 

7. CONCLUSIONS  

We have characterised the nonlinear effects of exogenous factors on peak hour wholesale electricity price 

formation as well as in forecasting the price distribution. Using a dynamic quantile regression model with 

fundamental factors and conditional volatility as explanatory variables, we capture effects such as mean 

reversion, spikes, time varying volatility, and at the same time, estimate the rather complex relationships 

of this price to fundamentals. For this type of data, disentangling the intrinsic stochastic volatility from 

the induced effects of volatile fundamental factors is a substantial challenge, and the proposed approach 

was both transparent and comparatively effective. We demonstrated how lagged prices, prices of gas, coal 

and carbon, forecasts of demand and reserve margin in addition to price volatility influence the peak price 

distribution in quite intuitive ways.  In general we find positive elasticities for the underlying fuel 
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commodities (gas, coal and carbon prices) with, as expected, no distinctly sustained pattern over the 

quantiles, as the relative impacts of coal and gas change over time and carbon prices adjust to some extent 

to their difference. The elasticity of demand is positive, as expected, with increased effects at higher 

quantiles. The elasticity of reserve margin is negative, also as expected, with increased impacts on higher 

quantiles. Conditional volatility of the shocks in expectations is mainly found to have an effect on 

extreme low and high quantiles, which is plausible. An increase in volatility drives low prices lower and 

high prices higher, suggesting that high price uncertainty combined low/high electricity prices may lead 

prices to overshoot the fundamentals. 

We have also shown that the quantile regression models, taking into account the nonlinear effects of 

exogenous factors, outperform the CAViaR and GARCH models regarding out-of-sample forecast of the 

price distribution quantiles. Furthermore, including conditional volatility as a factor captures 

heteroscedasticity in transparent way, with plausible market-induced effects, without the need for a fully 

parametric specification. Thus, using an expanding window and a stringent significance level of 1%, the 

multifactor-with-volatility quantile regression models are the only models passing all the validation tests 

and provide the most accurate forecasts. They are also easier to implement than some of the other state-

of-the-art benchmark methods. The benefit of being able to model the distinctly different impacts of 

fundamentals, as well as the conditional volatility of the shocks to the expectations, is evidently beneficial 

not only in its explanatory power, and potential for scenario construction in risk simulation, but also in its 

out of sample forecasting performance. 

In summary, we have analysed a practical and validated multifactor quantile approach for predicting the 

electricity price distribution where market participants (with long/short positions) are able to analyse how 

various risk factors affect low/high prices. This fundamental model can also be used for accurate day-

ahead nonparametric density estimation (via multiple quantiles) of the spot price distributions. This is 

valuable for producers, retailers, and speculators in determining optimal strategies for short-term 

operations, risk management, hedging and trading.  
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Figure 1.  Price of UKPX period 38 (18:30-19:00) in £/MWh, UK day ahead forward gas price (£/BTU) from the National Balancing Point, Daily Steam Coal Europe-ARA index 

(translated into £/ton), EEX-EU Carbon emission price daily spot price (translated into £/ton), The UK national demand  forecast for period 38 from the system operator (MWh), the 

UK national forecast of reserve margin for period 38 from the system operator (MWh). The data spans from 8th June 2005 to 4th September 2010 (1915 observations altogether). 



- 31 - 

 

Statistics Mean Med Min Max Std Skew Kurt JB ADF ρ1 ρ10 Q(10) Quantiles 1 % 5 % 10 % 90 % 95 % 99 % 

Pt 58.79 46.93 13.22 421.72 37.54 2.92 18.92 23040 -6.93 0.71 0.52 3268 Pt 18.18 24.12 28.89 98.38 130.07 194.06 
ln Pt 3.93 3.85 2.85 6.04 0.52 0.49 3.19 79 -4.55 0.84 0.72 5586 ln Pt 2.90 3.18 3.36 4.59 4.87 5.27 

       
Table 1.  UKPX period 38 prices. The table shows the mean, median, min, max, standard deviation, skewness, excess kurtosis, Jarque-Bera, Augmented Dickey Fuller with constant 

and control lags according to the SIC criteria, autocorrelation at lag 1 and 10 and Ljung-Box statistics with 10 lags. We also show the empirical 1%,5%,10%,90%,95%, and 99% 

quantiles. Critical values at 1% level for JB is 9.21, for ADF-test -3.43, and for LB(10) 23.21.   

Quantile lag P38 Gas Coal Carbon Demand Reserve Margin 

 

Volatility R
2
-adjusted 

1 % 0.22*** 0.31*** 0.31*** 0.07*** 0.08 -0.37*** -0.22*** 49.0 

5 % 0.28*** 0.27*** 0.33*** 0.06*** 0.23*** -0.28*** -0.11*** 53.6 

10 % 0.31*** 0.27*** 0.31*** 0.05*** 0.24*** -0.27*** -0.02 55.2 

25 % 0.38*** 0.23*** 0.30*** 0.04*** 0.30*** -0.27*** -0.02 57.5 

50 % 0.47*** 0.19*** 0.27*** 0.03*** 0.25*** -0.35*** 0.06** 58.9 

75 % 0.55*** 0.20*** 0.22*** 0.02*** 0.26*** -0.46*** 0.02 58.2 

90 % 0.59*** 0.20*** 0.16*** 0.01 0.29*** -0.54*** 0.04 58.9 

95 % 0.50*** 0.20*** 0.22*** 0.02*** 0.34** -0.63*** 0.21*** 59.8 

99 % 0.35** 0.26* 0.30 0.02 0.42 -0.86*** 0.16 58.3 

       

 

 Table 2.  Quantile regression results.  The *, ** and *** indicates significance at the 10%, 5% or 1% level, respectively. 
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      Expanding Window Rolling Window 

Model Quantile Violations LRUC LRCC REGHit REGVar Quantile  Violations LRUC LRCC REGHit REGVar Quantile   

Gaussian,  1 0.00 % NA 0.000 NA 0.056 3.422 0.00 % NA 0.000 NA 0.054 3.432 
lag prices 5 1.35 % 0.000 0.000 0.921 0.776 3.594 1.94 % 0.000 0.000 0.672 0.559 3.603 
(Model 1) 10 5.06 % 0.000 0.000 0.469 0.003 3.686 5.91 % 0.000 0.000 0.158 0.000 3.695 

90 89.11 % 0.315 0.242 0.745 0.143 4.335 89.62 % 0.665 0.695 0.889 0.093 4.338 
95 93.16 % 0.006 0.020 0.039 0.040 4.427 92.74 % 0.001 0.003 0.238 0.091 4.429 

  99 97.47 % 0.000 0.000 0.644 0.561 4.599 97.38 % 0.000 0.000 0.787 0.522 4.601 

Skew Student-t,  1 0.42 % 0.024 0.076 0.999 0.048 3.498 0.25 % 0.002 0.009 1.000 0.147 3.509 
lag prices 5 4.05 % 0.122 0.214 0.814 0.045 3.665 4.39 % 0.260 0.503 0.782 0.257 3.669 
(Model 2) 10 9.03 % 0.258 0.432 0.433 0.001 3.737 9.45 % 0.526 0.540 0.613 0.001 3.740 

90 88.35 % 0.065 0.031 0.543 0.400 4.325 88.61 % 0.117 0.239 0.873 0.371 4.334 
95 93.67 % 0.043 0.080 0.065 0.148 4.457 94.01 % 0.128 0.130 0.178 0.055 4.464 

  99 98.90 % 0.741 0.811 0.968 0.996 4.783 98.99 % 0.965 0.875 0.977 0.841 4.776 

Gaussian, 1 0.51 % 0.059 0.163 0.998 0.023 3.461 0.68 % 0.232 0.461 0.994 0.004 3.471 
fundamental 5 2.19 % 0.000 0.000 0.012 0.000 3.620 2.45 % 0.000 0.000 0.071 0.000 3.630 
(Model 3) 10 6.41 % 0.000 0.000 0.976 0.000 3.705 6.33 % 0.000 0.000 0.647 0.000 3.714 

90 90.04 % 0.961 0.397 0.297 0.023 4.304 90.55 % 0.526 0.635 0.471 0.003 4.312 
95 94.43 % 0.377 0.593 0.918 0.268 4.389 94.43 % 0.377 0.316 0.216 0.322 4.396 

  99 97.72 % 0.000 0.001 0.771 0.926 4.548 97.55 % 0.000 0.000 0.359 0.335 4.555 

Skew Student-t, 1 1.01 % 0.965 0.875 0.970 0.000 3.520 1.10 % 0.741 0.811 0.217 0.001 3.537 
fundamental 5 3.71 % 0.034 0.018 0.210 0.000 3.669 4.98 % 0.973 0.784 0.884 0.000 3.683 
(Model 4) 10 8.44 % 0.066 0.015 0.970 0.000 3.739 10.30 % 0.736 0.072 0.185 0.000 3.751 
 90 89.87 % 0.885 0.334 0.380 0.011 4.303 90.04 % 0.961 0.586 0.464 0.026 4.308 
 95 95.36 % 0.567 0.754 0.870 0.506 4.415 95.44 % 0.478 0.705 0.353 0.371 4.422 
  99 98.82 % 0.542 0.694 0.950 0.898 4.667 99.07 % 0.802 0.866 0.980 0.811 4.680 

Table 3: Forecasting results out of sample for GARCH models with expanding window (left) and rolling window (right). Table shows the p-values of the backtests defined in 

Section 4.3. RegHit and REGVar are the regression based tests given by Eq. (4.10) and (4.11), respectively. Bold type p-values are significant at the 5% level. Quantile  denotes the 

average value of the quantile estimates.  
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      Expanding Window Rolling Window 

Model Quantile Violations LRUC LRCC REGHit REGVar Quantile  Violations LRUC LRCC REGHit REGVar Quantile   

Linear quantile  1 0.68 % 0.232 0.461 0.000 0.007 3.393 1.01 % 0.965 0.875 0.001 0.001 3.563 

regression, 5 2.87 % 0.000 0.001 0.030 0.006 3.598 3.54 % 0.016 0.003 0.001 0.059 3.707 

lag prices 10 6.24 % 0.000 0.000 0.001 0.402 3.697 8.02 % 0.019 0.000 0.000 0.122 3.768 

(Model 5) 90 91.90 % 0.025 0.022 0.354 0.308 4.357 91.81 % 0.032 0.069 0.169 0.911 4.301 

95 96.20 % 0.048 0.132 0.992 0.423 4.520 95.95 % 0.122 0.221 0.748 0.163 4.403 

  99 98.90 % 0.741 0.297 0.002 0.023 4.872 98.99 % 0.965 0.875 0.112 0.008 4.697 

Linear quantile  1 0.42 % 0.024 0.076 0.999 0.350 3.519 1.43 % 0.158 0.026 0.001 0.112 3.418 

regression, 5 3.88 % 0.067 0.058 0.081 0.118 3.694 5.40 % 0.532 0.021 0.000 0.096 3.615 

fundamental 10 8.10 % 0.025 0.022 0.057 0.041 3.755 10.97 % 0.272 0.003 0.000 0.071 3.708 

(Model 6) 90 88.69 % 0.141 0.136 0.284 0.098 4.285 89.70 % 0.736 0.834 0.368 0.320 4.362 

95 94.26 % 0.254 0.433 0.962 0.158 4.394 94.60 % 0.532 0.553 0.439 0.128 4.515 

  99 98.73 % 0.377 0.273 0.119 0.431 4.647 98.65 % 0.250 0.409 0.921 0.006 4.854 

Linear quantile  1 0.76 % 0.385 0.635 0.011 0.276 3.559 1.35 % 0.250 0.232 0.169 0.151 3.581 

regression,  5 4.30 % 0.260 0.262 0.043 0.095 3.698 5.99 % 0.128 0.064 0.001 0.105 3.710 

fundamental and   10 8.52 % 0.083 0.099 0.201 0.040 3.757 10.55 % 0.532 0.388 0.002 0.044 3.767 

volatility 90 89.03 % 0.272 0.202 0.374 0.174 4.288 89.45 % 0.532 0.687 0.534 0.224 4.299 

(Model 7) 95 94.77 % 0.716 0.654 0.435 0.206 4.398 94.94 % 0.921 0.520 0.830 0.271 4.417 

  99 98.73 % 0.377 0.551 0.385 0.507 4.647 98.40 % 0.055 0.017 0.028 0.002 4.690 
 

Table 4: Forecasting results out of sample for the linear quantile regression models with expanding window (left) and rolling window (right). Table shows the p-values of the 

backtests defined in Section 4.3. RegHit and REGVar are the regression based tests given by Eq. (4.10) and (4.11), respectively. Bold type p-values are significant at the 5% level. 

Quantile  denotes the average value of the quantile estimates.  
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    Expanding Window Rolling Window 

Model Quantile Violations LRUC LRCC REGHit REGVar Quantile  Violations LRUC LRCC REGHit REGVar Quantile   

Indirect  1 1.18 % 0.542 0.694 0.951 0.001 3.522 1.52 % 0.095 0.003 0.900 0.000 3.533 
GARCH(1,1) 5 3.71 % 0.034 0.086 0.760 0.000 3.673 5.40 % 0.532 0.031 0.255 0.000 3.692 
CaViaR 10 8.44 % 0.066 0.145 0.982 0.000 3.740 8.95 % 0.219 0.036 0.120 0.308 3.751 
(Model 8) 90 89.79 % 0.809 0.471 0.606 0.195 4.301 90.30 % 0.734 0.714 0.027 0.186 4.309 

95 94.77 % 0.716 0.878 0.500 0.556 4.410 95.27 % 0.662 0.341 0.046 0.777 4.419 
  99 98.90 % 0.741 0.811 0.963 0.977 4.647 98.57 % 0.158 0.183 0.003 0.602 4.671 

Symmetric absolute  1 1.35 % 0.250 0.409 0.462 0.001 3.543 1.69 % 0.030 0.060 0.022 0.000 3.553 
Value CAViaR, 5 3.88 % 0.067 0.143 0.432 0.000 3.677 5.49 % 0.450 0.532 0.372 0.000 3.690 
(Model 9) 10 7.85 % 0.011 0.035 0.988 0.000 3.741 8.19 % 0.032 0.049 0.038 0.000 3.749 

90 89.96 % 0.961 0.730 0.435 0.337 4.294 89.70 % 0.736 0.768 0.207 0.758 4.300 
95 94.26 % 0.254 0.433 0.766 0.923 4.405 94.26 % 0.254 0.283 0.138 0.768 4.403 

  99 98.90 % 0.741 0.297 0.219 0.328 4.669 98.73 % 0.377 0.551 0.301 0.785 4.672 

Asymmetric slope 1 0.93 % 0.802 0.223 0.076 0.002 3.533 1.77 % 0.016 0.037 0.043 0.000 3.559 
CAViaR, 5 3.80 % 0.048 0.113 0.395 0.000 3.673 5.15 % 0.816 0.818 0.375 0.000 3.687 
(Model 10) 10 8.19 % 0.032 0.086 0.540 0.000 3.749 10.21 % 0.809 0.470 0.248 0.000 3.752 

90 89.79 % 0.809 0.471 0.203 0.333 4.298 89.03 % 0.272 0.453 0.260 0.683 4.295 
95 95.44 % 0.478 0.406 0.110 0.225 4.413 95.02 % 0.973 0.789 0.455 0.547 4.418 

  99 98.90 % 0.741 0.811 0.963 0.846 4.719 98.57 % 0.158 0.284 0.902 0.587 4.692 

Adaptive CAViaR, 1 0.68 % 0.232 0.461 0.994 0.000 3.385 1.01 % 0.965 0.875 0.972 0.000 3.480 
(Model 11) 5 3.12 % 0.002 0.005 0.221 0.000 3.651 4.14 % 0.160 0.285 0.722 0.000 3.686 
 10 7.68 % 0.006 0.014 0.103 0.000 3.736 9.11 % 0.303 0.494 0.143 0.000 3.757 
 90 90.30 % 0.734 0.162 0.001 0.005 4.293 90.13 % 0.884 0.069 0.000 0.028 4.293 
 95 96.29 % 0.034 0.026 0.100 0.337 4.461 95.44 % 0.478 0.239 0.008 0.271 4.423 
  99 99.16 % 0.579 0.781 0.036 0.629 4.764 98.90 % 0.741 0.811 0.040 0.949 4.720 

 

Table 5: Forecasting results out of sample for the CAViaR models with expanding window (left) and rolling window (right). Table shows the p-values of the backtests defined in 

Section 4.3. RegHit and REGVar are the regression based tests given by Eq. (4.10) and (4.11), respectively. Bold type p-values are significant at the 5% level. Quantile denotes the 

average value of the quantile estimates. 


