Systemic risk in energy derivative markets: a graph-theory analysis

D. Lautier & F. Raynaud
University Paris-Dauphine
Ecole Polytechnique Fédérale de Lausanne
Objectives

• Empirical study on systemic risk in derivative markets
• Approach in three dimensions
 - Observation time
 - Spatial integration
 - Maturity of the transactions
• Influence of physical as well as derivative markets
• Integration as a necessary condition for systemic risk to appear
• Correlations, co-movements
Selected markets

- Choice directed by:
 - Concerns about speculation in commodities
 - Development of bio fuels
 - Portfolio management / Commodities as a new class of assets
 - Organized markets with the highest transaction volumes

- 14 markets (> 760 000 daily futures prices (settlement))
- 1998 - 2011
Methodology

- Huge volume of data + 3 dimensional analysis
- Price system = complex evolving system
- Use of methods originated from statistical physics
- Graph-theory and networks
- Graph:
 - Nodes: time series of daily futures returns
 - Links: correlations between the price returns
- Full connected graph:
 all possible connections between N nodes (time series of price returns) with \(\frac{N(N-1)}{2}\) links
Example of the crude oil market
(1 market, maturity dimension)
Methodology

- Information in the graph is filtered
 - most relevant links
 - highest correlations

- Minimum Spanning Trees (MST)
 Mantegna (1999)
 Path for the propagation of prices fluctuations

1. How did we get minimum spanning trees?
2. Our results with the MST, in the 3 dimensions:
 maturity, space, 3D
3. Dynamical analysis on the graphs and on the MST
1. Minimum spanning trees

- Synchronous correlation coefficients ρ of prices returns r:

$$ r_i = \frac{(\ln F_i(t) - \ln F_i(t - \Delta t))}{\Delta t} $$

$$ \rho_{ij}(t) = \frac{\langle r_i r_j \rangle - \langle r_i \rangle \langle r_j \rangle}{\sqrt{\left(\langle r_i^2 \rangle - \langle r_i \rangle^2\right)\left(\langle r_j^2 \rangle - \langle r_j \rangle^2\right)}} $$

- With: F(t), futures prices at t
- Correlation matrix C, (NxN), symmetric
From correlations to distances

• Non linear transformation
• Distances d between two nodes defined as follows:

$$d_{ij} = \sqrt{2(1 - \rho_{ij})}$$

• Distance matrix D, (NxN)
• Full connected graph
 - represents all the possible connections between N nodes
 - weighted by the distances
Minimum spanning tree

- All the nodes of the graph are spanned
- No loops
- Result: links of the MST are a subset of the initial graph
- The information space is reduced from \(\frac{N(N-1)}{2} \) to \((N-1) \)
- In this study: shortest path linking all nodes

 Easiest path for the transmission of prices shocks
2. Topology of the MST

II) Methodology: Graphs and Minimum Spanning Trees (MST)

Figure: Star-like and chain-like trees

Lautier, Ling, Raynaud
Systemic risk in commodity markets
AFFI May 2014 5 / 22
2. Topology of the MST

2.1. Maturity dimension

Heating oil – Month 1 to 18

Samuelson effect

15/05/2014 Dauphine
Evolution of the integration through time: Eurodollar

1998-2001
Evolution of the integration through time: Eurodollar

1998-2001

2001-2004

15/05/2014 Dauphine 14
Evolution of the integration through time: Eurodollar

1998-2001

2001-2004

2004-2009

15/05/2014
Evolution of the integration through time, US natural gas

1998-2001
Evolution of the integration through time, US natural gas

1998-2001

2001-2004
Evolution of the integration through time, US natural gas

1998-2001

2001-2004

2004-2009
2.2. Spatial dimension

- Wheat
- Corn
- Soy Bean
- Soy Oil
- Crude, US
- Crude, UK
- Heating oil, US
- S&P 500
- Nat. Gas, US
- Nat. Gas, UK
- Gas oil, UK
- Gold
- Exchange rates
- Interest rates
- Crude, US
- Crude, UK
- Heating oil, US
- S&P 500
- Nat. Gas, US
- Nat. Gas, UK
- Gas oil, UK
- Gold
2.2. Spatial dimension

Agriculture

Wheat → Corn → Soy Bean → Soy Oil

Interest rates

Exchange rates

Gold

Crude, US

Crude, UK

Heating oil, US

Gas oil, UK

Nat. Gas, US

S&P 500

Nat. Gas, UK
2.2. Spatial dimension

Agriculture
- Wheat
- Corn
- Soy Bean
- Soy Oil
- S&P 500

Energy
- Crude, US
- Crude, UK
- Heating oil, US
- Soy Oil
- Nat. Gas, US
- Nat. Gas, UK
- Gas oil, UK
- Interest rates
- Exchange rates
- Gold
2.2. Spatial dimension

Agriculture
- Wheat
- Corn
- Soy Bean
- Soy Oil
- S&P 500

Finance
- Crude, US
- Crude, UK
- Heating oil, US
- Gold
- Exchange rates
- Interest rates

Energy
- Nat. Gas, US
- Nat. Gas, UK
- Gas oil, UK
- Crude, UK
2.2. Spatial dimension

Agriculture
- Wheat
- Corn
- Soybean
- Soy Oil

Finance
- Crude, US
- Crude, UK
- Heating oil, US
- Nat. Gas, US
- Nat. Gas, UK
- Gas oil, UK
- S&P 500

Energy
- Interest rates
- Exchange rates
- Gold
- Crude, US
- Crude, UK
- Heating oil, US
- Nat. Gas, US
- Nat. Gas, UK
- Gas oil, UK
2.2. Spatial dimension

Agriculture
- Wheat
- Corn
- Soy Bean
- Soy Oil

Finance
- S&P 500
- Crude, US
- Crude, UK
- Heating oil, US
- Gas oil, UK
- Nat. Gas, US
- Nat. Gas, UK

Energy
- Exchange rates
- Interest rates
- Gold
2.4 Allometric coefficients

- Quantifying the degree of linearity in the trees
- The root is the node with the highest connectivity
- Starting from this root, two coefficients A_i and B_i are assigned to each node i:

\[
A_i = \sum_j A_j + 1 \\
B_i = \sum_j B_j + A_i \\
B \sim A^\eta
\]

Where η is the allometric exponent

η stands between 1+ (star-like) and 2- (chain-like)
<table>
<thead>
<tr>
<th>MATURITIES</th>
<th>Static</th>
<th>CI95%</th>
<th>Dynamic</th>
<th>CI95%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Light crude</td>
<td>1.994</td>
<td>1.9058 – 2.0822</td>
<td>1.910</td>
<td>1.8904 – 1.929</td>
</tr>
<tr>
<td>Brent crude</td>
<td>1.889</td>
<td>1.883 – 1.894</td>
<td>1.888</td>
<td>1.88 – 1.895</td>
</tr>
<tr>
<td>Heating oil</td>
<td>1.899</td>
<td>1.891 – 1.906</td>
<td>1.886</td>
<td>1.874 – 1.898</td>
</tr>
<tr>
<td>Gasoil</td>
<td>1.880</td>
<td>1.874 – 1.885</td>
<td>1.845</td>
<td>1.835 – 1.854</td>
</tr>
<tr>
<td>Nat. gas (US)</td>
<td>1.750</td>
<td>1.677 – 1.822</td>
<td>1.796</td>
<td>1.745 – 1.847</td>
</tr>
<tr>
<td>Nat. Gas (Eu)</td>
<td>1.874</td>
<td>1.87 – 1.877</td>
<td>1.832</td>
<td>1.83 – 1.834</td>
</tr>
<tr>
<td>Wheat</td>
<td>1.864</td>
<td>1.609 – 2.118</td>
<td>1.761</td>
<td>1.694 – 1.827</td>
</tr>
<tr>
<td>Soy bean</td>
<td>1.848</td>
<td>1.661 – 2.034</td>
<td>1.680</td>
<td>1.623 – 1.736</td>
</tr>
<tr>
<td>Soy oil</td>
<td>1.889</td>
<td>1.883 – 1.894</td>
<td>1.856</td>
<td>1.832 – 1.879</td>
</tr>
<tr>
<td>Corn</td>
<td>1.880</td>
<td>1.874 – 1.885</td>
<td>1.772</td>
<td>1.731 – 1.813</td>
</tr>
<tr>
<td>Eurodollar</td>
<td>1.927</td>
<td>1.817 – 2.036</td>
<td>1.846</td>
<td>1.806 – 1.885</td>
</tr>
<tr>
<td>Gold</td>
<td>1.732</td>
<td>1.552 – 1.912</td>
<td>1.826</td>
<td>1.788 – 1.863</td>
</tr>
<tr>
<td>SPATIAL</td>
<td>1.493</td>
<td>1.383 – 1.602</td>
<td>1.621</td>
<td>1.574 – 1.668</td>
</tr>
<tr>
<td>3D</td>
<td>1.757</td>
<td>1.712 – 1.802</td>
<td>1.850</td>
<td>1.673 – 2.023</td>
</tr>
<tr>
<td>MATURITIES</td>
<td>Static</td>
<td>CI95%</td>
<td>Dynamic</td>
<td>CI95%</td>
</tr>
<tr>
<td>----------------</td>
<td>---------</td>
<td>---------------</td>
<td>---------</td>
<td>---------------</td>
</tr>
<tr>
<td>Light crude</td>
<td>1.994</td>
<td>1.9058 – 2.0822</td>
<td>1.910</td>
<td>1.8904 – 1.929</td>
</tr>
<tr>
<td>Brent crude</td>
<td>1.889</td>
<td>1.883 – 1.894</td>
<td>1.888</td>
<td>1.88 – 1.895</td>
</tr>
<tr>
<td>Heating oil</td>
<td>1.899</td>
<td>1.891 – 1.906</td>
<td>1.886</td>
<td>1.874 – 1.898</td>
</tr>
<tr>
<td>Gasoil</td>
<td>1.880</td>
<td>1.874 – 1.885</td>
<td>1.845</td>
<td>1.835 – 1.854</td>
</tr>
<tr>
<td>Nat. gas (US)</td>
<td>1.750</td>
<td>1.677 – 1.822</td>
<td>1.796</td>
<td>1.745 – 1.847</td>
</tr>
<tr>
<td>Nat. Gas (Eu)</td>
<td>1.874</td>
<td>1.87 – 1.877</td>
<td>1.832</td>
<td>1.83 – 1.834</td>
</tr>
<tr>
<td>Wheat</td>
<td>1.864</td>
<td>1.609 – 2.118</td>
<td>1.761</td>
<td>1.694 – 1.827</td>
</tr>
<tr>
<td>Soy bean</td>
<td>1.848</td>
<td>1.661 – 2.034</td>
<td>1.680</td>
<td>1.623 – 1.736</td>
</tr>
<tr>
<td>Soy oil</td>
<td>1.889</td>
<td>1.883 – 1.894</td>
<td>1.856</td>
<td>1.832 – 1.879</td>
</tr>
<tr>
<td>Corn</td>
<td>1.880</td>
<td>1.874 – 1.885</td>
<td>1.772</td>
<td>1.731 – 1.813</td>
</tr>
<tr>
<td>Eurodollar</td>
<td>1.927</td>
<td>1.817 – 2.036</td>
<td>1.846</td>
<td>1.806 – 1.885</td>
</tr>
<tr>
<td>Gold</td>
<td>1.732</td>
<td>1.552 – 1.912</td>
<td>1.826</td>
<td>1.788 – 1.863</td>
</tr>
<tr>
<td>SPATIAL</td>
<td>1.493</td>
<td>1.383 – 1.602</td>
<td>1.621</td>
<td>1.574 – 1.668</td>
</tr>
<tr>
<td>3D</td>
<td>1.757</td>
<td>1.712 – 1.802</td>
<td>1.850</td>
<td>1.673 – 2.023</td>
</tr>
</tbody>
</table>
3. Dynamical studies

3.1. Full connected graph: mean correlations and their variances (3-D)
3.2. Node’s strength

- Full connected graph
- The node’s strength S_i indicates the closeness of one node i to all others:

$$S_i = \sum_{i \neq j} \frac{1}{d_{ij}}$$
3.3. Normalized tree’s length

- Sum of the lengths of the links belonging to the MST:

\[
L(t) = \frac{1}{N - 1} \sum_{(i,j) \in MST} d_{ij}
\]

- The more the length shortens, the more integrated the system is
3.4. Survival ratios

- Robustness of the topology over time
- The survival ratio S_R refers to the fractions of edges in the MST, that survives between two consecutive trading days:

$$S_R(t) = \frac{1}{N-1} |E(t) \cap E(t-1)|$$

$E(t)$: set of edges at t
Pruning the trees

- Analysis of inter-market and inter-sectors reorganizations
- Consider only the links between markets, whatever the maturity is considered
Pathological configuration: an example
Pathological configuration: an example

Energy

Finance

Agriculture
Most stable links

(a) SoyOil-SoyBean SoyBean-Corn Wheat-Corn

(b) GasNatEu-Gold

Eurodol-Gasoil Eurodol-Gold

Brent crude-SoyBean NatGasUS-SoyOil Heating oil-SoyBean

Gold-FxRate Brent crude-Light crude Eurodol-Exrate

Light crude-Heating oil Gasoil-Heating oil
Main results - Extensions

MAIN RESULTS

1. Topology
 - Chain-like trees in the maturity dimension
 - Star-like trees in the spatial and 3-D dimensions

2. Emerging taxonomy
 - Trees organized around the three sectors of activity
 - Center of the graph: two crude oils

3. Integration
 - Increases in all dimensions (spatial, maturity, 3D)
 - Progresses at the heart of the system

EXTENSIONS

1. Introducing directions in the graph
2. Event studies / financial crises
1. Introducing directions in the graph

• Full connected graph
• Information flows:
 - static analysis
 - dynamic analysis
Full connected graph, maturity dimension
Information flows: static analysis

Figure: Average information transfer between maturities, 2001-2011
Figure: Information transfer between maturities, 2001-2011
2. Event studies / financial crises

Centrality measures

![Diagram of network with nodes labeled E, F, and D, illustrating the structure of the path of propagation.](image)