

Evolving Business Models for Utilities: Key Principles and Emerging Tendencies David Newbery EPRG, University of Cambridge THE FUTURE OF UTILITIES **Paris-Dauphine** 27th September 2017

- The 4-D future:
 - Decarbonization have cost falls shaken the Trilemma?
 - Digitilization smart everything?
 - Decentralization on generation and demand response
 - Disruption does this mean the death of utilities?

• Efficient market procurement and good pricing principles critical to managing transition

- transitions take a long time but anticipation lowers cost
- Good news: groping towards sensible solutions
 - But many business models depend on distorted tariffs

• GB's RES auction procured off-shore wind at £74.75 (2021/2) & £57.50/MWh (2022/3)

- Was £140, then £120, Govt challenged to sub-£100/MWh
- less than GB nuclear (£92.5/MWh post 2024)
- Bloomberg NEO 2017 projects:
 - wind & solar 34% elec output world-wide by 2040
 - Europe 50% output from intermittent RES by 2040
 - world PV increases x 14 by 2040, LCOE falls 66%,
 - world wind x 4 by 2040, onshore LCOE falls 47%, off-shore 71%
- Battery costs continue to fall, EVs improve
 - but decarbonizing heat proving very challenging
 - electric heat pumps massively increase peak electric demand

- European Union commitments to decarbonize
- A high **RES** scenario is becoming realistic
 - Falling cost of RES, storage still costly, some PSP?
 - need to retain options on nuclear, CCS, ...
 - improvements in interconnectors flexibility
- Need to modify market design and regulation
 => six principles of good market & tariff design
- Implications: generation/retailing businesses:
 - flexible plant: how to justify needed investment?
 - aggregators of flexibility services? Price caps?
- Implications for network business models

-To avoid the death spiral from DG, change tariffs!

Principles for market and tariff design

- 1) Correct market failures close to source
- 2 Allow cross-country variation, not one-size-fits-all
- 3 Let prices reflect the value of all electricity services
- 4 Collect revenue shortfalls with least distortion
- 5 **De-risk financing** of low-carbon investment
- 6 Retain flexibility to respond to new information

Regulators need to be more agile

- Networks are regulated natural monopolies
 - low variable costs, high fixed costs, cheaper to have single network
 - => marginal cost below average cost
 - => efficient pricing at marginal cost fails to recover full costs
- \Rightarrow challenge: efficient price signals and recover residual
- $\Rightarrow Public finance theory balances efficiency vs equity$ $\Rightarrow Networks as quasi public goods, charge <math>\propto$ WTP?
- Low carbon generation has similar cost characteristics
 - -Low variable costs, high capital/fixed cost
- => challenge is to develop efficient wholesale/retail prices
 - -But not normally a regulated asset
 - \Rightarrow long-term contracts?

How to charge final consumers?

Benefits of grid connectivity for DG

- Electricity characteristics and cost drivers:
 - capacity (MW): max demand on links to Load
 - energy (MWh) nodal for each time period: fuel + C
 - quality (frequency, voltage etc.) nodal each second
- Pay networks for access option to take capacity
 - Drives investment in T & D

- Some depends on system peak, some on *local* max. demand
- regulated so need careful design
- QoS bundled with access, energy, capacity
 - paid by final consumers to suppliers of service
 - Procured by System Operator (markets, auctions, ...)

- Pay for **energy** at efficient price
 - System marginal cost, SMC
 - variable cost of the most expensive in merit generator
- Value/cost varies over time and space
 - => locational marginal price varying every 5 mins(?)
 - the US Standard Market Design
- Pay for capacity
 - Loss of Load Probability x (Value of Lost Load -SMC)
 - full price = (1-LoLP)*SMC + LoLP*VoLL
 - reflects probabilities of supply or lack of supply

Ancillary services for QoS

Faster more flexible responses needed with high renewables Synchronous inertia – supplied by fossil Inertial Response generators, not by wind and PV Reserve Ramping SIR POR TOR1 SOR FFR TOR₂ 20min – 12hr 5 - 90s90s - 20min 0 - 5s

Figure 1: Frequency Control Services (Source: EirGrid)

UNIVERSITY OF | Energy Policy CAMBRIDGE | Research Group

- Least system cost to meet reliability and CO₂ targets
 - Coordinate generation, transmission, distribution
 - Generation: timely delivery at right place, size, technology
 - Transmission: built, sized and used for efficient dispatch
 - CO₂ underpriced by ETS, needs carbon price floor
 - Challenging with unbundled liberalised structures
- Liberalized markets need good price signals
 - Many of which are regulated (transmission, distribution)
- Benchmark efficient spot prices
 - Wholesale price = SMC + CP at each node (LMP)
 - CP = LoLP*(VoLL SMC); ∑LoLP=LoLE
 - Ancillary service prices to incentivise efficient quality
- Location signals: long-term financial contract on LMP
- Revenue shortfalls: Ramsey pricing on final consumer
- Targeted subsidies, efficient risk sharing

UK's Carbon Price Floor - in Budget of 3/11

EUA price second period and CPF £(2012)/tonne

D Newbery

Source: EEX and DECC Consultation

Correcting the CO₂ price

- ETS CO₂ price is neither adequate, durable nor credible –Reforms to date had no impact
- setting the right CO₂ price is difficult
 - social cost of future harm hard to estimate
 - break-even price highly sensitive to price of fossil fuel
- Ideally fossil generation should pay corrective tax
 - GB has carbon price support- brings EUA price up to "right" level
- If not use emissions performance standards (EPS)?
- Or, zero-C subsidy = shortfall in efficient wholesale price – perhaps €10/MWh

Auctioned capacity subsidy simpler for RES Needed for existing nuclear plants to prevent exit

www.eprg.group.cam.ac.uk

- Learning spill-overs need remuneration
 - Almost entirely from making and installing equipment
- \Rightarrow Contract $\in X$ /MWh for N MWh/MW, Auction determines X Reasons:
- Subsidy targeted on source of learning = investment aid
 - Reduces cost of capital and risk via debt finance
 - Addresses failure to set right CO₂ price
- Exposes RES to current locational spot price
 => incentivizes efficient location, connection
- Does not amplify benefits of high wind/sun
 - Not over-reward favoured locations with same learning
- Auction better than bureaucrats at minimizing cost

RES CfD 2015 auction results

Compare 22/23 £74.75

Technology		admin price	lowest clearing price	2015/16	2016/17	2017/18	2018/19	Total Capacity (MW)
Advanced Conversion	£/MWh	£140	£114. 7 9			£119.89	£114.39	
Technologies	MW					36	26	62
Energy from Waste with	£/MWh	£80	£80				£80.00	
Combined Heat and Power	MW						94.75	94.75
Offshore wind	£/MWh	£140	£114.39			£119.89	£114.39	
	MW					714	448	1162
Onshore wind	£/MWh	£95	£79.23		£79.23	£79.99	£82.50	
	MW			\frown	45	77.5	626.05	748.55
Solar PV	£/MWh	£120	£50.00	£50.00	£79.23			
	MW			32.88	36.67			69.55

Source: DECC (2015)

Foolish bid - withdrew

- Ambitious RES targets need flexible back-up
 - Normally comes from old high-cost plant = coal
 - EU Large Combustion Plant Directive 2016 limits coal
 - Integrated Emissions Directive further threat to coal
 - GB Carbon price floor + hostility to coal => close old coal
 - high (pre-2015) EU gas prices and low load factors
 - gas unprofitable, new coal prohibited by GB EPS
- Future prices now depend on uncertain policies
 - on carbon price, renewables volumes, other supports
 - on policy choices in UK, EU, COP21, ...

Without a contract new flexible back-up too risky? ⇒ Auctions for capacity ⇒ Better still for Reliability Options

GB 2014 Capacity Auction

- Transmission-connected generation TG pays full G TNUoS
- Distribution-connected generation DG receives L TNUoS
 - But avoided cost at most the transmission demand residual
 - = extra money to pay full cost less efficient charge of transmission
- \Rightarrow represents *extra* £50/kWyr embedded benefit in 2018/19
- \Rightarrow Auction cleared at £20/kWyr
- \Rightarrow DG gets £70/kWyr and TG gets £20/kWyr
- \Rightarrow Large number of small (10 MW) diesel and reciprocating engines win capacity contracts on distribution network

Over-encourages entry of costly subscale plant

- Distinguish efficient price and resulting short-fall in required revenue
 - Efficient peak T price is marginal expansion cost
 - At best 30% average cost, less if demand falling
- Ramsey-Boiteux pricing => "tax" inelastic demand
- Diamond-Mirrlees: tax only final consumers
- \Rightarrow T&D revenue shortfall on final consumption *not* net demand (at GSP or premises)
- \Rightarrow reduces embedded G benefit from £60 to < £10/kWyr
- \Rightarrow **Regulator**s need to compute efficient T&D tariffs
- \Rightarrow and move faster. Auction in 1 day grants 15-yr contract

GB network charges: residual = extra support to gen on DN

Reliability Options

- RO sets strike price, s (e.g. at €500/MWh)
- Market price **p** reflects scarcity (Voll x LoLP)
 - SO sets floor price to reflect spot conditions
 - Wholesale price signals efficient international trade
- RO auctioned for annual payment *P*
 - 7-10 yrs for new, 1 yr for existing capacity
- Gen pays back wholesale price p
 - less strike price if available (p s)
 - G chooses whether to be paid p or s + P
- Suppliers hedged at strike price s for premium P

- Increased intermittency shift supply and/or demand to when/where needed
- => Ancillary services: inertia, fast frequency response, back-up reserves
- Not new: Pumped Storage built to shift nuclear
- Recent developments:
 - Increased wind/solar
 - Reduced battery costs
 - Rise in battery electric vehicles
 - Smart meters and demand side aggregators

What are the sources of demand/supply shifting? What are their costs?

Electric storage vs pumped storage hydro

Lazard's Levelized Cost of Storage 2.0 \$/MWh

Unsubsidized Levelized Cost of Storage Comparison

	Compressed Air	\$116 \$140				
TRANSMISSION SYSTEM	Flow Battery(V)	\$314	\$690			
	Flow Battery(Zn)	\$434	\$549			
	Flow Battery(O)	\$340	\$630			
	Lithium-Ion ^(a)	\$267	\$561		_ ~	
	Pumped Hydro	\$ 52 5198			—— PSI	
	Sodium ^(b)	\$301	\$71	84		
	Thermal	\$227 \$280				
	Zinc	\$262 \$438				
	Flow Battery(V)	\$441 5	\$617 🔶 \$657	• \$919		
	Flow Battery(Zn)	\$448	\$563 • \$627 • \$71	89		
Contraction of the second	Flow Battery(O)	\$447	\$626 🔶 \$704	\$985		
PEAKER	Flywheel	\$342 \$479 🔶	\$555 🔶 \$77	78		
REPLACEMEN'I	Lithium-Ion ^(a)	\$285 \$ 399 🔶	\$581 🔶 5	\$813		
	Sodium ^(b)	\$320 \$447 🔶	\$	803 🔶	\$1.124	
	Thermal	\$290 \$348 \$ 406 \$	487			
	Zinc	\$277 \$388 🔶 \$450	5 🔶 \$ 638			
FREQUENCY	Flywheel ^(c)	\$502 🔶	\$598	\$1.05	1 \$1,251	
REGULATION	Lithium-Ion ^(a)	\$159 \$190 \$ 233 \$277				
1	Flow Battery(V)	\$516	\$77	0		
	Flow Battery(Zn)	\$524	\$564			
	Flow Battery(O)	\$524		\$828		
DISTRIBUTION	Flywheel	\$400	\$654			
SUBSTATION	Lead-Acid	\$425		\$933		
JOD JAN 1014	Lithium-Ion ^(a)	\$345	\$657			
	Sodium ^(b)	\$385		\$959		
	Thermal		\$707	\$862		
	Zinc	\$404	\$542			
	Flow Battery(Zn)		\$779		\$1,346	
	Flywheel		\$601	\$983		
DISTRIBUTION	Lead-Acid		\$708			\$1,710
FEEDER	Lithium-Ion ^(a)	\$532		\$1,014		
	Sodium ^(b)	\$5	586		\$1	1,455
	Zinc	\$515		\$815		
	\$0	\$200 \$400	\$600 \$800	\$1,000	\$1,200 \$1,400	\$1,600 \$1,80
	\$1	00/MWh	Levelized Cost	(\$/MWh)	Low/High (\$/kW-;	year) ^(d)

Storage conclusions

- Storage has value but is expensive
 - Can arbitrage prices but flexibility services likely more valuable
- PSP useful, storage hydro far larger
- => interconnect to Norway
- Batteries useful for ancillary services
 - And relieving distribution bottlenecks
- Supply and demand shifting over time and space cheaper
 => Back-up generation and interconnection usually cheaper

than more storage

The battery revolution has been over-hyped for the ESI

- Generators face depressed wholesale prices
 - \Rightarrow **Defer** investment until profitable, prompting
 - \Rightarrow capacity or reliability option auctions
- Retailers: opportunities:
 - offer innovative use of smart meters?
 - act as aggregators for flexibility services
- Threats: face price caps?
 - Resulting from rising levies to finance RES
- damage limitation:
 - -argue for benchmarked cap confined to retailing margin?
 - or tendering for default supplier?
 - or accept re-regulation of domestic market?

Disruptions

- Large RES already cost competitive (with right C price)
 - grid scale PV, wind farms, off-shore wind in good sites
 - often connected to distribution network
 - risk invisibility, DNO => DSO communicating with TSO
- household PV appears attractive
 - because of over-generous subsidies
 - and network costs covered per kWh and/or net metering
- Future pricing/management needs to be far more local – constraints appearing on local networks from PV, EV, heat pumps
- ICT will be critical for hassle-free management consumer propositions will need careful design

- Old tariff model mostly per kWh no longer fit
 - particularly with net metering
 - over-encourages distributed generation (PV)
 - strands remaining customers paying for fixed costs
- Need to seek innovative network tariffs

 – e.g. high initial charge /kWh with option to move to lower energy charges and higher capacity charge

• potentially shift fixed costs to higher consumers

 – tariff on final consumption, DG faces different export and domestic tariff – feasible with smart metering

– large new loads (PV, EVs, heat pumps) to face TOU
 access or pay for peak consumption (to cover upgrades)

- •Good: Auctions can dramatically reduce costs
- Each jurisdiction is facing similar problems

 and trying out a variety of solutions
- Learning from elsewhere and experimenting essential
 ⇒ challenge funds to try new ideas and test regulations
 ⇒ copy Ofgem's Network Innovation Competitions
- **Bad**: Bad tariff design + capacity auctions => rapid bad irreversible decisions
 - need smarter, quicker responses to ensure tariffs are suitable
- **Ugly**: tension between efficient and "fair" pricing can led to inefficient *and* inequitable outcomes

Conclusions

•4-D decarbonize, digitalize, decentralize, disrupt

- -EC Clean Energy Directive identifies good principles
- => clear guidance for good policy instruments
- But need adequate **carbon price support**
- Low-Carbon electricity has high capital, low variable costs – pricing needs to adjust, distinguish access, capacity, energy, quality
- Support for RES needs change
 - recognise learning benefits by capacity support, CO2 per MWh
 - needs better location and dispatch price signals => markets
 - market responsive requires auctions and good network tariffs
 - reliability auctions and contracts avoiding trade distortions between MSs
- Utilities will need different business models
 - to address threats and make use of opportunities

Evolving Business Models for Utilities: Key Principles and Emerging Tendencies David Newbery EPRG, University of Cambridge THE FUTURE OF UTILITIES **Paris-Dauphine** 27th September 2017

BOS	Balance of system (cost)
BSUoS	Balancing Services Network Use of System ≈ €2-5/MWh
CCS	Carbon Capture and Storage
CfD	Contract for Difference
CONE	Cost of New Entry
CP	Capacity payment
DG	Distribution-connected Generation
EPS	Emissions Performance Standard
ETS	Emissions Trading System
GHG	Greenhouse gas
GSP	Grid Supply Point (connection to grid)
G, L	Generation, Load
LMP`	Locational Marginal Pricing (Nodal pricing)
LoLP	Loss of Load probability
LoLE	Loss of load expectation in hrs/yr = reliability standard
MS	Member State
R&D	Research and Development
RES	Renewable energy/electricity supply
RES-E	Renewable energy supply in electricity
RO	Reliability option
ROC	Renewable Obligation (i.e. green) Certificate
SMC/P	System Marginal Cost/Price
T&D	Transmission and Distribution
TG	Transmission-connected generation
TNUoS	Transmission Network Use of System, G =Generation, L=Load
VOLL	Value of Lost Load

- <u>http://ec.europa.eu/energy/en/news/commission-proposes-new-</u> <u>rules-consumer-centred-clean-energy-transition</u> gives links to the various directives
- Clean Energy For All Europeans, COM/2016/0860 final at http://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1481278671064&uri=CELEX:52016DC0860
- Ofgem (2017) Impact Assessment and Decision on industry proposals (CMP264 and CMP265) to change electricity transmission charging arrangements for Embedded Generators at <u>https://www.ofgem.gov.uk/system/files/docs/2017/06/cmp264265.do</u> <u>cx.pdf</u>
- Newbery, D., M. Pollitt, R. Ritz, & W. Strielkowski, 2017. Market design for a high-renewables European electricity system, EPRG 1711 at <u>http://www.eprg.group.cam.ac.uk/wp-</u> <u>content/uploads/2017/06/1711-Text.pdf</u>

Slides on decarbonizing generation

David Newbery EPRG, University of Cambridge THE FUTURE OF UTILITIES Paris-Dauphine 27th September 2017

- **Power sector** key to decarbonising economy
 - -Large, easiest, and capital highly durable
- Coal-fired electricity has more than twice the GHG emissions of gas *and* far higher air pollutants
 - gas as transition fuel to the low carbon future
 - But there is lots of coal => CCS a long-run priority
- Deployment has dramatically lowered cost of wind, PV – justifies support for R&D and deployment
- Large RES depresses prices, needs flexible reserves
- \Rightarrow hard to invest in flexible plant in policy-driven market
- \Rightarrow capacity auctions and new flexibility products
- \Rightarrow Increases case for interconnections paid for security
- \Rightarrow Need better contracts for RES and capacity adequacy

Rapid decarbonisation of electricity is possible - with nuclear power CO2 emissions per kWh 1971-2000

Premature nuclear retirement makes no economic sense

- Variable costs of nuclear << average cost
 - But not negligible
 - Low gas prices lower US wholesale prices
 - => nuclear plants retiring early
- US lacks a carbon price impacting on electricity
 - Social cost of CO₂ \$40/tonne?
 - At \$25/tonne => raises CCGT cost \$12/MWh
 - and > \$20/MWh if coal at the margin
- But zero-carbon nuclear not supported in US
 - Unlike renewables

Case for a CO₂ price or equivalent subsidy

Coal displaced by RES & gas

UK coal policy

- UK adopted a carbon price floor
 - ETS demonstrably unfit for purpose
 - Combined with an emissions performance standard
 - Impossible to meet at baseload on coal, possible on CCGT
- UK Govt: all coal to cease by 2025
 - eligible for annual capacity auction to provide low cost winter peaking capacity (and CO₂ already priced)
- Given COP21 and plans to reform ETS surely no sane utility plans new coal in EU

Spare slides on RES, storage

David Newbery EPRG, University of Cambridge THE FUTURE OF UTILITIES Paris-Dauphine 27th September 2017

UNIVERSITY OF Energy Policy CAMBRIDGE Research Group Dramatic fall in solar PV prices

On-shore wind: taller towers give higher capacity factors

Source: IRENA (2016

Sep 2017 GB CfD auction

2012 prices

Project Name	Developer	Technology Type	Capacity (MW)	Strike Price (£/MWh)	Delivery Year	Homes Powered	Region
Drakelow Renewable Energy Centre	Future Earth Energy (Drakelow) Limited	Advanced Conversion Technologies	15.00	74.75	2021/22	27,190	England
Station Yard CFD 1	DC2 Engineering Ltd	Advanced Conversion Technologies	0.05	74.75	2021/22	90	Wales
Northacre Renewable Energy Centre	Northacre Renewable Energy Limited	Advanced Conversion Technologies	25.50	74.75	2021/22	46,220	England
IPIF Fort Industrial REC	Legal and General Prop Partners (Ind Fund) Ltd	Advanced Conversion Technologies	10.20	74.75	2021/22	18,490	England
Blackbridge TGS 1 Limited	Think Greenergy TOPCO Limited	Advanced Conversion Technologies	5.56	74.75	2021/22	10,080	England
Redruth EfW	Redruth EFW Limited	Advanced Conversion Technologies	8.00	40.00	2022/23	14,500	England
Grangemouth Renewable Energy Plant	Grangemouth Renewable Energy Limited	Dedicated Biomass with CHP	85.00	74.75	2021/22	148,880	Scotland
Rebellion	Rebellion Biomass LLP	Dedicated Biomass with CHP	0.64	74.75	2021/22	1,120	England
Triton Knoll Offshore Wind Farm	Triton Knoll Offshore Wind Farm Limited	Offshore Wind	860.00	74.75	2021/22 ¹	893,690	England
Hornsea Project 2	Breesea Limited	Offshore Wind	1,386.00	57.50	2022/23 ²	1,440,300	England
Moray Offshore Windfarm (East)	Moray Offshore Windfarm (East) Limited	Offshore Wind	950.00	57.50	2022/23 ³	987,220	Scotland

- World pumped storage capacity 2016 = 164 GW
 - Estimated at 99.7% of global bulk electric storage
- **PSP Storage capacity** at 12 hrs = **2.9 TWh**
 - GB 2.9 GW PSP, 27 GWh storage = 9.3 hrs
 - Germany 6.8 GW PSP, 50 GWh storage = 7.4 hrs
- World hydro 2012 = 979 GW, 3,288 TWh/yr =16% total
- Hydro storage at 3 mths = 2,144 TWh = 700+ times PSP
 - Norway 23.4 GW storage hydro, 70 TWh = 2,400+ time GB PSP
- Global electro-chemical **batteries 2016**:
- 1.6 GW, 3 GWh, 0.1% of pumped storage

EES overhead costs

		cost/kWh capacity	DoD	O&M /kW.yr	cycles/ day	Life yrs.	levelized cost/MWh
Leighton Buzzard Li-ion NOAK		£850	100%	£10	1	9	£251
Leighton Buzzard Li-i	on NOAK	£850	75%	£13	2	10	£264
Tesla 2018 Low		\$475	100%	\$15	1	12	\$207
Tesla 2018 High		\$1,050	60%	\$20	2	14	\$323
Li-lon 2020 Low		\$385	100%	\$15	1	12	\$175
Li-Ion 2020 High		\$525	100%	\$20	2	6	\$179
Na-S Low		\$420	100%	\$15	1	7	\$256
Na-S high		\$700	80%	\$20	2	6	\$287
Lead-acid low		\$196	100%	\$15	1	1	\$617
Lead-acid high		\$280	100%	\$15	1	3	\$334
		cost/kWh		O&M		Life	levelized
PSP	interest	capacity	DoD	/kW.yr	cycles/day	yrs.	cost/MWh
Dinorwig	5%	£162	60%	£20	1	75	£58
Turlough Hill IE	5%	£50	60%	£20	1	75	£32
Cruachan	5%	£100	60%	£20	1	75	£43
LEAPS CA	8%	\$183	60%	\$40	1	75	\$107
DECC 2050 default	5%	£260	60%	£20	1	75	£81

- 2016 world car fleet 1.2 bn; 1.2 m BEVs @ 25kWh = 30 GWh
 - IEA Paris accord calls for 100 m BEVs by 2030 = 2.5 TWh
 - C.f. dams have 2,000+ TWh
- UK: if 5 million BEVs by 2035 (13% fleet)
 - 20kWh each => 100 GWh; 30 km/day = 6 kWh/day
 - 50% charging at 3 kW at 5.30 p.m. = 8 GW extra load at peak
 - 8% charging at any moment = 1.2 GW shiftable load
- Really good idea to control time of charging
- Helpful (but modest) ability to demand shift
- Fast frequency response also useful

BEVs can harm a lot or help somewhat