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Introduction 
• Smart grids technologies will deeply modify distribution 

and final consumers’ environment. 

• Consumers’ adaptation to signals:  

– Information. 

– Prices. 

• Potentially, a new “era” in electricity markets as demand is 

usually seen as inelastic. 

• In this context, Demand Response (DR) programs to be 

developed, but:    

– Which level of available DR? 

– Which pricing schemes to value DR? 

– Which allocation between “actors” of the DR valorization? 
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Dynamic pricing and elasticity 

• Lijensen (2007): 

– Consumers of electricity are captive in the short run. 

• Haney & al. (2009), Faruqui & Sergici (2010): 

– Demand could be elastic with SG and DR. 

• Herter (2007): 

– Consumers could be worse off with DR mechanisms (dynamic pricing, 

critical peak pricing (CPP)). 

– Consumers’ anticipate greater electricity bills with the use of DR tools 

(also Park et al., 2014). 

• Léautier (2014):  

– Marginal value of Real Time Price (RTP) decreases with the number of 

consumers “covered”. 
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Examples of signals and load reductions 

• Indirect feedback (education, information campaigns): 

– Rather limited impact. 

– 0 to 7% load reduction. 

• Direct feedback (in home display, monitoring data from 

smart meters): 

– More significant. 

– 2 to 15% load reduction. 

• Dynamic pricing (with or without direct load control): 

– Highest leverage. 

– Up to 50% load reduction for some periods. 

– Consumers give lower value to direct load control. 
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Acceptability of consumers for smart technologies  

• To accept a technology, consumers must “value it” 

(Kaufmann et al., 2013).  

• Their Willingness To Pay for smart meters and devices is 

positive (Pepermans, 2014): 

– WTP of 200€ to change for a smart meter. 

– WTP for smart devices : 

• That do not impact privacy : 160€ - 185€. 

• That maintain their level of comfort : 110€ - 125€.  

• That are not « visible » : 80€ - 90€. 

• Thus, consumers value smart technologies and smart 

devices depending on their “footprint” at home.  
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• So, consumers could adapt their behavior when they are informed: 

– Literature on dynamic pricing; 

– Smart meters and In Home Display create incentives (11% of load 

reduction); 

• But they want to preserve their comfort and privacy and have to be 

compensated for their adaptation. 

• Moreover, some counter-incentives exist and could impact WTP and 

smart technologies benefits : 

– Energy savings are lower than expected. 

– Some consumers need more information and more interactions with their 

suppliers. 

– Consumers sometimes believe that smart meters and smart devices only 

serve the interest of suppliers. 

 

 
 

Changes in behaviors and counter-incentives 
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The pricing of DR 

• Crampes and Léautier (2010, 2015): 

– Consumers must pay for the baseline of their consumption. 

– DR must be paid at market price. 

– Transfers towards producers could be efficient. 

• Chao (2011): 

– Market price. 

– Second best pricing : difference between market price and retail rate. 

– Buying the baseline at market price. 

• Chao’s (2011) main results: 

– Buying the baseline is the most efficient to improve the welfare. 

– Second best pricing then follows. 
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Objectives and main results 
• Objectives: 

– Study DR programs under different pricing schemes using data of EPEX 

France.  

• Approach:  

– Computing model with EPEX market data to simulate actors’ revenues.  

– Relationships between actors are those of Chao (2011). 

• Preliminary results: 

– Demand response reductions are greater when DR is paid at market 

price. 

– To reduce peak demand, buying the baseline or second best pricing have 

the same impact; only allocations of revenues differ. 

– DR could be profitable for welfare but costs should be reduced. 
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• Four categories of actors : 

– Generators, suppliers, DR providers, consumers. 

– Generators, consumers (or DRP) deal with the risk of DR. 

• DR could be valued on different markets, according to gate 

closure and probability to be used. 

• Consumers buy electricity at the retail rate (RR) whereas 

Suppliers buy it at spot prices (ps). 

• DR providers: 

– Sell the DR quantities on the market and they are remunerated at DR 

price.  

– Allocate part of this revenue to generators (αk) and consumers (βi). 

• 10 levels of DR (DR1DR10):  

– As in the literature, from 0-10% of total and 0-40% of rush demand.  

 

 

Main assumptions 
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Three schemes of DR pricing (1/2) 

• Case 1 : LMP 

– « Market price » (LMP) 

– DR is valued at spot price (ps) 

– peff = ps  (with ps >0) 

• Case 2 : SBP 

– « Second best price » (SBP) 

– DR remuneration is the difference between spot price and retail rate  

– peff = ps – RR (with ps >RR) 

• Case 3 : BB 

– « Buying the baseline » (BB) 

– Consumers buy their consumption baseline at RR 

– peff = ps  (with ps >RR) 
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• In case 1 (LMP), any load reduction is profitable for 

consumers. 

• In case 2 (SBP) and 3 (BB), consumers reduce their 

consumption if ps > RR. 

• In case 2: 

– ps< RR leads to negative DR remuneration. 

• In case 3: 

– They value their unit consumption at the RR because they buy the 

baseline. 

– If ps< RR, they prefer consuming. 

Three schemes of DR pricing (2/2) 
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Operators’ profits 

• With positive market prices : 

– Generators 

ПGen = ps . (Q - DR) – CT(Q - DR) + αk . peff . DR  

– Suppliers 

П LSP = (RR - ps) . (Q - DR) + Baseline (in “case 3”) 

– DR Providers 

П DRP = (1- αk - βi) . peff . DR  

– Consumers 

  CS = Total surplus + βi . peff . DR – Baseline (in “case 3”)  

      With DR the load shedding. 

• With negative market prices, no DR is observed. 
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Timing of the game 

• Generators sell on the market Q-DR volumes at ps and earn DR 

transfers to compensate DR profit losses. 
 

• Suppliers buy Q-DR volumes at ps and sell them at retail rate. They 

perfectly match their supply and demand. 

 => However, they incur profit losses/benefits according to levels 

 of retail rate and ps. 
 

• DR Providers offer DR services to consumers and bid DR quantities 

on the market before gate closure.  
 

• Consumers buy Q-DR volumes at retail rate and receive transfers 

from DRP for load-shedding incentives and compensation for surplus 

losses. 

  => They do not consume DR volumes thus surplus is reduced. 
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Data 
• We use EPEX data for 2014. 

– Hourly prices and hourly quantities. 

• Peak period is defined as hours 5PM to 8PM (“rush hours” 

from EPEX). 

• Off-peak period is defined as hours 1AM to 4 AM (“night 

hours” from EPEX).  

• We use these data : 

– to compute actors’ revenues in each pricing schemes. 

– to determine the “implicit” break even point (revenues divided by 

sales or consumed quantities). 

– To estimate supply and demand curves to introduce supply costs 

and consumer surplus (on progress)     
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Intuitions of simulative results 
• Generators 

 Direct revenues 

 Potential transfers, “buying baseline” and load-shifting  

• Suppliers 

 Direct revenues, load-shifting (if ps> RR) 

 Decrease of costs, in losses, “buying baseline”, load-shifting (if ps< RR) 

• DR Providers 

 Transfers 

 Revenues 

• Consumers 

 “buying baseline”, load-shifting 

 Decrease of costs, transfers 

• Welfare 

 Value induced by DR > negative effect 
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Results 1 : DR level 

• DR quantities are higher under market price (case 1): 

– Up to 40% of demand for “peak demand”. 

– For “global hours”, 0-10%  (DR1-DR4) are consistent with literature. 

• « Buying the baseline » (case 2) and « second best price » (case 

3) lead to the same DR levels:  

– Up to 15% of global demand 

– Up to 20% of peak demand  

• But these 2 cases differ by the redistribution of revenue 

between actors and DR valuation. 

 • Peak demand represents ± 20% of the global demand 

(EPEX 2014). 

• DR rate is higher in peak periods as profitable conditions 

are more frequent. 
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DR rate for each pricing scheme 
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Result 2 : impact on welfare 
• Load-shedding increases the welfare; however profitability is 

always under discussion. 
 

• LMP is the best scheme for welfare. 

– Intuition : DR often occurs and is paid at market price. 

– Break even point up to 48 €/MWh to make DR strategies profitable. 

– Break even point up to 8 €/MWh for others schemes (SBP and BB). 
 

• Break even points are lower if only rush hours are considered. 

– Up to 5,6€/MWh in LMP case. 

– Up to 1,73€/MWh in others cases. 

– We are consistent with “demonstrators” : recovering load-shedding 

costs only during peak hours is not profitable. 

– Profitability decreases with load-shifting effect. 
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Level of Welfare for DR scenarios 
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Results 3 : Impact on actors 
• For Generators, DR often implies transfers towards generators to 

compensate direct revenue losses (quantity & price effects). 

– Best scenario is BB if all hours are considered (41€/MWh), LMP and BB 

for others cases (higher break even point if load-shifting): between 10 

and 360€/MWh!! (load-shifting +transfers).  

• Consumers’ best scenario is LMP (greater DR valued at spot price) 

and the worse BB (they buy the baseline thus their costs increase). 

• Suppliers’ revenues increase with DR but break even costs are low 

(up to 8€/MWh); load-shifting reduces their benefits : demand and 

spot prices increase in off-peak period, erasing savings of the peak 

period. 

• DRP have positive revenues (break even point up to 20€/MWh). They 

are decreasing values of DR because of the marginal revenue of DR is 

decreasing : further DR is valued at lower prices. 
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Introduction of costs and consumers’ surplus 
• Linear supply and demand curves are computed with : 

– Aggregated data on each hours for each season of consumption. 

– Data on supply and demand bids made for each hour.   

• We use backward induction to solve our model : 

– Consumers buy Q-DR at RR prices => equilibrium on the retail market. 

–  Suppliers buy Q-DR quantities on the market; DRP valorize the DR 

volumes considering the scheme of DR pricing. 

– Generators face Q-DR demand and serve it at spot price. 

• Suppliers face the risk of RR value; DRP face the risk of zero DR 

quantities or unprofitable activity because of transfers.  

• Generators and consumers bear the risk of imbalances or lower prices 

on the market. DRP could manage this risk of imbalances for 

consumers : they keep larger part of DR valuation.  
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The downstream market (1) 
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The downstream market (2) 

• Transfers (βi) could compensate consumer’s losses in surplus. 

 DR must be neutral for consumers’ comfort. 

• Equilibrium is 𝑄∗ =
𝑎 −𝑅𝑅

𝑏
. 

• Surplus losses equal to : 

Surplus Losses = 𝑃 𝑡 𝑑𝑡 − 𝑅𝑅 × 𝐷𝑅
𝑄∗

𝑄∗𝐷𝑅
  

• Opportunity savings increase incentives to implement DR. 

 In BB case, transfers to compensate surplus losses are necessary 

as opportunity savings do not exist. 

• Transfers should also be positively correlated with the risk 

consumers bear (imbalance settlement). 
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The upstream market 
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• Transfers (αi) could compensate losses in generators’ profits. 

 DR must compensate part of generation costs they must recover and to 

reduce investment risks. 

• Profit losses equal to : 

Profit Losses = 𝑝𝑠. 𝑄
∗ − 𝑝𝑠𝐷𝑅. 𝑄

∗
𝐷𝑅

+  𝑆 𝑡 𝑑𝑡
𝑄∗

𝑄∗𝐷𝑅
 

• Opportunity savings could reduce the amount of transfers. 

 In BB case, transfers to compensate profit losses are not necessary as 

traded volumes are 𝑄∗ at price ps. 

• Again, transfers should be positively correlated with the risk 

generators bear (reduction in traded demand as it was forecasted). 

• With or without DR, opportunity savings due to positive prices always 

exist => No effect of this economic value.  

 

The upstream market (2) 
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Welfare with supply and demand curves 

Changes in welfare (%) 

DR scenarios 
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Initial results on global hours 
• When all hours are concerned, DR improves the welfare: 

– Best scenario is LMP because of great valuation of DR. 

– SBP follows because of consumer’s costs, generators and 

consumers’ losses in profit or surplus are reduced. 

– BB is closing off the ranking because of the increase in consumer’s 

costs of supply. 

• DRP break even costs are in a range of 12 to 30€/MWh. 

 => DR could be profitable 

 => To be confirmed with refined estimations of supply and 

 demand curves. 

• However, costs of DR could invert results on welfare 

because of compensation in savings and losses. 



32 

Initial results on rush hours 
• For rush hours, DR could have negative effect on welfare: 

– If load-shifting is reduced, positive effects on welfare always exist. 

– If all DR volumes are shifted, negative effects occur. 

 Demonstrators on DR have shown that load-shifting could be of 100% 24h 

after load-shedding. 

• LMP is always the best pricing scheme except for high values of DR : 

BB is then preferred as the negative impact on producers’ profits is 

lower and the valuation of DR for consumers encompasses the 

increase in costs (purchase of the baseline). 

 => This is consistent with the literature on DR. 

• DRP break even costs fluctuate between 2 to 33€/MWh. 

 => Marginal gains of DR decreases : high values of DR are less 

 valued than the previous one… To be confirmed. 



33 

 Quantitative results and intuitions 

 Theoretical background and motivations 

 The model 

 Introduction 

Outline 

 Conclusions and further developments  



34 

Conclusions and further developments 
• Some conclusions : 

– Pricing schemes impact the level of available DR. 

– DR could improve the welfare if load-shifting is reduced. 

– DR is profitable if its costs are moderated and recovered on large 

periods/per day. 

– Some of these results must be “refined”. 
 

 

• Current works and further developments: 

– Refined the estimation of demand and supply curves using EPEX 

data. 

– Refined the allocation of DR revenues between actors. 

– Introduction of different markets to value DR (intraday spot market 

and balancing market). 
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Thanks for your attention 


