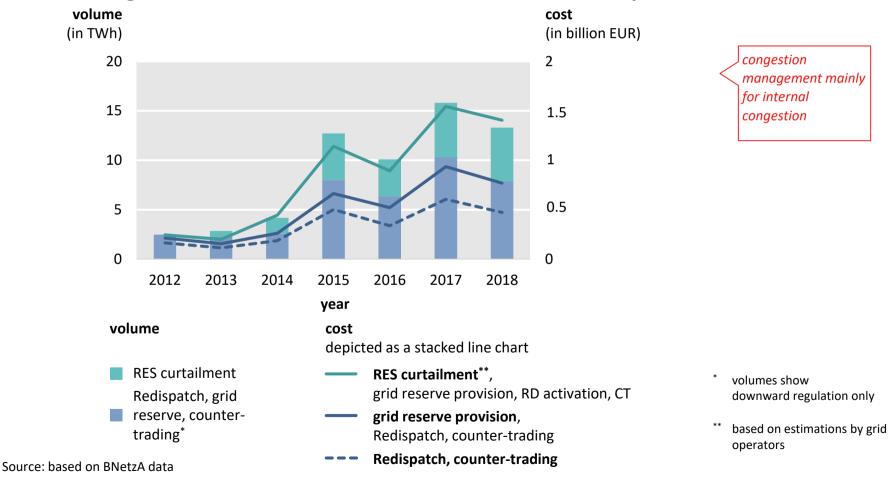
Coordination of Grids and Markets in the Light of the Energy Transition - Lessons from the Discussion in Germany


CEEM-Conference "Nodal versus Zonal Prices" Revisited: Lessons from the US Experience and Applicability to Europe?

Christoph Maurer | Paris | 20 November 2019

Background

Coordination of grids and markets becomes more of a concern in Germany

> Could become worse with CEP implementation/70% MinRAM

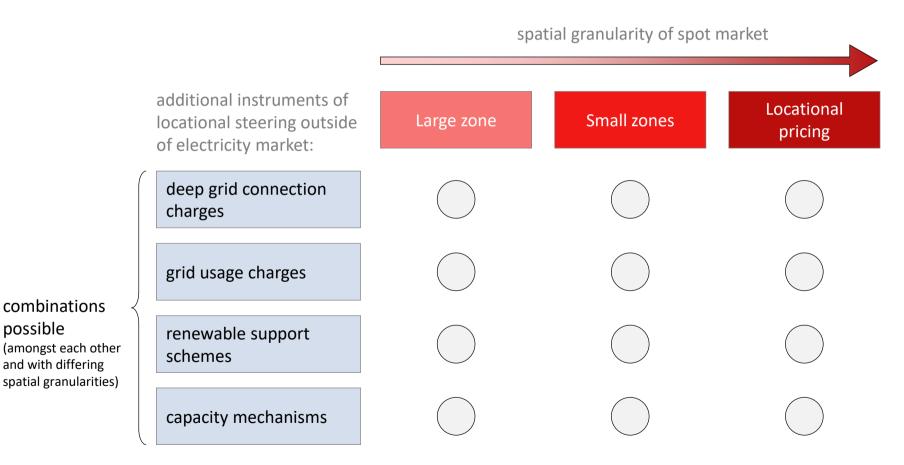
2019/11/20 | 1

Coordination of grids and markets

What is the idea behind the current market design? Is it still viable?

main objective "undistorted market environment"

downsides become more significant, though


- markets are offered a virtual copperplate within large and liquid bidding zone
- market participants can trade as if there was no congestion
 - cost-based compensation in case of necessary interventions by grid operators
- decisions by grid operators (necessarily non-market-based) have no (or only little) influence on market participants' profits
- grid follows demand continuous grid expansion to minimize gap between virtual copperplate and physics
- additional efforts needed to avoid XB-discrimination
- lagging grid expansion undermines credibility of the market design and could even endanger security of supply
- with more synchronized demand due to active market participation of consumers and new electricity applications like e-mobility and power-to-heat, unconditional promise to expand grid instead of controlling consumer behavior might become unsustainable

consentec

Coordination of grids and markets

possible

Different dimensions of local incentive components

consentec

Coordination of grids and markets

Nodal Pricing (LMP) as a theoretical benchmark?!

- Full integration of grids and markets by means of LMP often considered as an ideal in academia
- But optimality holds true only under certain assumptions which cannot be fulfilled in real-world situations
 - no transaction costs
 - no market power and contestable markets
 - no bulky, but fully divisible investments
 - no political influences on decision making e.g. grid expansion
 - perfectly rational, risk-neutral actors

Evaluation should not be based on ideal, but real models

Dynamic system transformation due to energy transition needs to be considered

Applicability of Nodal Pricing (LMP) in the Light of Germany's Energy Transition – Discussion Series with Experts

Main Findings of a Report by Neon and Consentec (1/2)*

requirements due to energy transition	 expansion of transmission and distribution grids required demand for innovations regarding market and grid integration of RES demand response, aggregators, storage,
static efficiency of dispatch	 LMP most likely advantageous but redispatch not necessarily inefficient application of nodal pricing to distribution level remains an issue with binding congestion, some kind of regulation/market supervision required independent from market design
dynamic efficiency of system development	 lack of local incentives w/ large bidding zones is a problem but credibility of localized price signals delivered by real-world LMP is doubtful, at least incentives for innovations in the field of (non-local) flexibility might be lower with LMP high transaction costs, no pooling no reliable price expectations due to low price stability

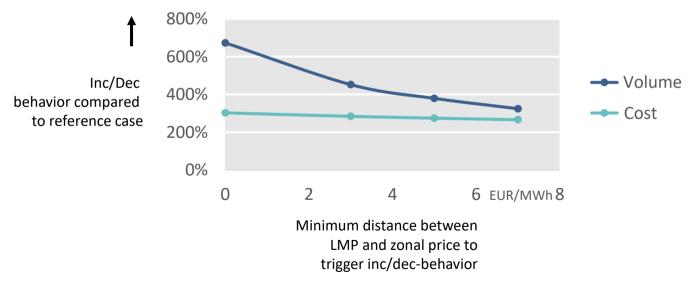
*Consentec/Neon, Nodale und zonale Strompreissysteme im Vergleich, report for BMWi, 2017

Applicability of Nodal Pricing (LMP) in the Light of Germany's Energy Transition – Discussion Series with Experts

Main Findings of a Report by Neon and Consentec (2/2)

consequences for grid expansion	 long lead-times for grid expansion → decisions cannot be based on observed prices fear of increased NIMBY behavior because LMP might be considered as an efficient way to deal with limited grid capacity
security of supply	 system security can be maintained also with redispatching, but effort might be lower with LMP w/o local incentives and w/o grid expansion, long-term risks for SoS cannot be excluded
RES development and support schemes	 Fundamentals of today's support schemes not compatible with LMP balance responsibility for zonal portfolios sliding FIP siting considered (only) when granting support with LMP, risk exposure of RES might be much higher → costs for RES support might increase no portfolios and no continuous intra-day trading → increase in imbalance costs? sliding FIP not viable because incentives from LMP require exposure to price risks

Applicability of Nodal Pricing (LMP) in the Light of Germany's Energy Transition – Discussion Series with Experts


Lessons learned

- There is not one way to deal with congestion
- Energy transition puts strong focus on dynamic efficiency
 - and LMP might not be optimally suited for this purpose
 - LMP might need to be complemented by government-granted support for all kinds of investments
- But zonal market design will only be sustainable if grid expansion remains credible option

LMP might have pros and cons – but it is definitely better than inconsistent market design combining zonal and nodal markets

Potential effects of inc-dec-gaming with market-based redispatch*

- Best-Guess-Scenario for Germany 2030
- high correlation of congestion with wind generation → anticipation not too complicated
- effects of maximizing revenues over zonal market and nodal redispatch market

Redispatch costs and volumes might more than triple \rightarrow no sustainable solution

2019/11/20 | 8

^{*} Neon/Consentec, Future redispatch procurement in Germany, report for BMWi, 2019

consentec

Consentec GmbH Grüner Weg 1 52070 Aachen Deutschland Tel. +49 241 93836-0 Fax +49 241 93836-15 info@consentec.de www.consentec.de