

Providing reliable and cost effective Ancillary Services by variable renewable power plants

Marc JEDLICZKA, Paris, 27/09/2018

Supported by: Federal Ministry for Economic Affairs and Energy

European Commissior

Today, renewables do not take part to AS mechanisms & markets :

- \Rightarrow Cap on renewable penetration
- \Rightarrow Missed/lost revenue

Objective

To allow variable renewables to provide ancillary services to the electrical system and to possibly earn complementary income from this

Means

- Forecasts improvement => to anticipate volumes & prices
- Virtual power plant (VPP) => to aggregate distant and heterogeneous RES power plants
- Bidding strategies

- => to pre-qualify offers on the market
- Demonstration tests
- => to run the VPP at real scale

REstable business chain

Forecasts: volume and prices <u>Challenges</u> : reliability, scalability, adaptability

PROJECT

Virtual Power Plant – Control system <u>Challenges</u> : AS markets, heterogeneous technologies

DEMONSTRATION

 \rightarrow

 \Rightarrow UC 4

Demonstration – Use cases

5 Use cases (9 KPIs per test)

⇒ UC 1	FCR :	Frequency Containment Reserve (Primary reserve)
--------	-------	---

- **UC 2a** aFRR : Automatic Frequency Restoration Reserve (a. Secondary reserve)
- **UC 2m** mFRR : Manual frequency restoration reserve (*m. Secondary reserve*)
- UC 3 RR : Replacement reserve (Balancing Reserve)
 - VC: Voltage Control (Local congestion management)

Demonstration – Scope

			Climate			Total agreed
Partner	Technology	Country	Atlantic	Continental	Mediterranean	(MW)
ENERCON	W	DE	50	150	-	200
	W	FR	-	-	30	30
	W	PT	-	-	20	20
HESPUL	PV	FR	-	0,7	11	11,7
	W	FR	10	-	-	10
CNR	PV	FR	-	14	-	14
ENGIE- GREEN	W	FR	94,3	151,7	-	246
TOTAL			154,3	316,4	61	531,7

Demonstration – Tests

	AP Test	UC1 FCR	UC3 RR	UC4 VS	тот
n of tests UP		5	0	3	4
n of tests DOWN		5	1	3	8
n minutes per test		15	30	15	75
MWh	40	35	5	0	80,0

- VPP ability to provide services to be evaluated by repeating a relevant number of times pre-qualification tests usually requested for conventional power plants
- Energy losses during tests capped at 80 MWh (total)

Demonstration – Metrics

9 KPIs per use case

- Number of under-fulfilments
- Number of over-fulfilments
- Maximum under-fulfilment respecting to the offer
- Maximum over-fulfilment respecting to the offer
- Maximum under-fulfilment
- Maximum over-fulfilment
- Energy of under-fulfilment
- Energy of over-fulfilment
- Amount of the service provided

Demonstration : conventional VPP (reference)

GERMAN AUTOMATIC FREQUENCY RESTORATION RESERVE: CONVENTIONAL VPP DATE: 2017-10-16 07:30:00 - 2017-10-16 20:30:00 **IMPORTANT TIME SERIES KPIs** 1.1 Quality of Provision 1.2 Relative Power Time Series (aFRR Activation) and Activation aFRR setpoint aFRR actual value constant set point signal -20 multiple changing set point signal -40 [MM] no -60 provision 93.47% fulfillment corrido -80 Activation -100 Quality* -120 -140 0.0 10 20 30 40 5.0 6.0 7.0 8.0 90 10.0 11.0 12.0 13.0 Time [h] 90.18% pos. 1.3 aFRR Provision Time Series nan% ordered provision [MW] neg. -50 89.23% õ -100 10 11 12 13 0 6 zero Time [h] **90.8%** Provision 1.4 Absolute Power Time Series Availability time schedule 400 active power 350 100.0% 300 ¥ 250 pos. ja 200 ∎nan% 150 100 neg. 50 100.0% 0 ż 3 4 5 8 9 10 ú 12 13 6 Time [h] * Values within fulfillment corridor

PROJECT

Demonstration : first results

GERMAN AUTOMATIC FREQUENCY RESTORATION RESERVE: REstable VPP

PROJECT

13

Website

https://www.restable-project.eu (news, factsheet, deliverables)

Publications

- 1) Simon Camal, Andrea Michiorri, Georges Kariniotakis, Andreas Liebelt. « Shortterm Forecast of Automatic Frequency Restoration Reserve from a Renewable Energy Based Virtual Power Plant ». *The 7th IEEE International Conference on Innovative Smart Grid Technologies - ISGT Europe 2017*, Sep 2017, Torino, Italy. 2017.
- 2) José R. Andrade, Jorge Filipe, Marisa Reis and Ricardo J. Bessa "Probabilistic Price Forecasting for Day-Ahead and Intraday Markets: Beyond the Statistical Model", Sustainability 2017, 9(11), 1990; doi:10.3390/su9111990
- 3) Ricardo J. Bessa, Corinna Möhrlen, Vanessa Fundel Malte Siefert, Jethro Browell, Sebastian Haglund El Gaidi, Bri-Mathias Hodge, Umit Cali, and George Kariniotakis, « Towards Improved Understanding of the Applicability of Uncertainty Forecasts in the Electric Power Industry", Energies 2017, 10(9), 1402; doi:10.3390/en10091402

14. June 2016: REstable wins the German-French-Innovation-Prize for Renewable Energies of the dena

28. September 2017: REstable wins the Special Award "European Energy Project" 2017 of the Handelsblatt Energy Academy

Name: Restable - Improvement of Renewables-based System Services Through Better Interaction of European Control Zones. April 2016 - February 2019. Budget: 3.5 M€

Objectives and methods: To provide ancillary services through : improved forecasts, Virtual power plant, bidding strategies, HV & LV renewables

Expected outcomes: Reduction of a barrier to high penetration of renewables; higher and diversified revenue for renewable producers

Funded by: ADEME « Investissements d'Avenir » (FR), BMWi (DE), Foundation for Science and Technology (PT), Within the ERAnNet Smart Grid Plus program

Partners: ARMINES Mines-ParisTech, ARTELYS, ENERCON, ENGIE GREEN, FRAUNHOFER IWES, HESPUL, HYDRONEXT, INESC TEC, SOLAR WORLD

Also with the collaboration of: EDISUN, VALOREM, CNR

Website: restable-project.eu

Supported by:

for Economic Affairs and Energy

THANK YOU FOR YOUR ATTENTION !

marc.jedliczka@hespul.org