

Enabling flexibilities – the role of the institutional framework

Dr. Michael Bucksteeg THE MARKET ARCHITECTURE FOR ENHANCING FLEXIBILITY PROVISION IN THE EU TARGET MODEL 16.04.2019, Paris

UNIVERSITÄT DUISBURG ESSEN

- Ongoing debate on the further development of the European energy system
 - Transition of the energy system towards a carbon neutral world
 - Increasing share of variable renewable energy sources
- Flexibilization of the demand side
 - Electricity demand still is largely inelastic
 - Intermittency of renewable energy sources will the demand side require to follow the generation
- An adequate institutional framework can support the development of flexibility options
 - 1. Market design
 - 2. Regulatory framework
 - 3. Contractual mechanisms

Demand side flexibility

- Network Code on Demand Connection
 - "Demand offered for the purposes of, but not restricted to, providing Active or Reactive Power management, Voltage and Frequency regulation and System Reserve."
- Energy Information Administration
 - "All the activities addressed to encourage customers to modify patterns of electricity usage, including the timing and level of electricity demand. [...]"

UNIVERSITÄT

- CEER
 - "Demand-side flexibility can be defined as the capacity to change electricity usage by end-use customers (domestic and industrial) from their normal or current consumption patterns in response to market signals, [...]"
- Sajjad et al. (2016)
 - "[...] possibility of deploying the available resources to respond in an adequate and reliable way to the load and generation variations during time at acceptable costs."

Motivation	1
Market design	2
Regulatory framework	3
Contractual mechanisms	4
Conclusion	5

Motivation	1
Market design	2
Regulatory framework	3
Contractual mechanisms	4
Conclusion	5

- Temporal dimension
 - In Europe, sequential market design with hourly and quarter-hourly products on short-term markets

UNIVERSITÄT

DUISBURG

- Spatial dimension
 - Todays' zonal market design only partially reflects locational information

- Simple case study
 - Consumer
 - 12 MWh consumption per day
 - Connected to grid node with 1.7 GW installed wind capacity in Northern-Germany
 - Procurement on the Day-ahead market for the following day
 - Two cases
 - A: inflexible load
 - B: flexible load
 - Two market designs
 - 1: Zonal
 - 2: Nodal

- ZonalNodalInflexible1A2AFlexible1B2B
- Market value of flexibility, i.e. cost savings of Day-ahead procurement due to flexibilization

	- 23
	-

created with mapchart.net ©

Consumer

UNIVERSITÄT

DUISBURG

- 1. Zonal market
 - Germany as one price zone
 - Average <u>zonal</u> price 29.99 EUR/MWh (SD: 7.20 EUR/MWh)
 - Impact of flexibilization on consumption pattern for a selected day:

UNIVERSITÄT

Open-Minded

8

- 2. Nodal market
 - Locational marginal prices for each grid node
 - Average <u>nodal</u> price 21.27 EUR/MWh (SD: 29.66 EUR/MWh)
 - Impact of flexibilization on consumption pattern for a selected day (changed price axis):

UNIVERSITÄT

Comparison of procurement costs in kEUR/a

	Zonal	Nodal
Inflexible	131	93
Flexible	113	58

• Cost savings due to flexibilization in kEUR/a

Cost savings -18 -35

- For consumers located in other regions, i.e. high load pockets, overall procurement costs increase and marginal cost savings decrease
- Higher spatial granularity in power markets would incentivize flexibilization of loads where needed

created with mapchart.net ©

- Zonal markets
 - If chosen well, alternative price zone configurations might already improve locational incentives
- Nodal markets
 - In U.S. nodal markets end consumer prices are also aggregated at a zonal/regional level compromising locational signals
 - Are nodal markets compatible with aggregator or virtualization models (at a larger scale)?
- Continuity of the market design
 - Changes in market design, i.e. bidding zone configuration, reassessed on a regular basis every 3 years
 - Longer lifetimes of assets, i.e. battery storages ~10 years
 - Regulatory uncertainty might impede investment decisions

created with mapchart.net ©

Motivation	1
Market design	2
Regulatory framework	3
Contractual mechanisms	4
Conclusion	5

Cross-sectoral decarbonization as key element to meet the climate targets

- > Sector coupling can provide a significant degree of flexibility
- Consistent regulatory setting to guarantee a level playing field for flexibility options

Regulatory framework

- Distortion of price signals across sectors (in Germany), e.g.
 - Support of renewable energy sources through
 - levies in the electricity sector (EEG levy)
 - tax mechanisms in the heating sector
 - Allocation of support payments for CHP in the electricity sector, although the heat sector also benefits from it
- > Heterogenous energy taxes and levies lead to
 - disproportionate impact on electricity prices
 - inconsistent (implicit) pricing of CO₂ emissions
 - barriers for power-to-X technologies

Energy taxes and levies with stateinduced price components

UNIVERSITÄT

DUISBURG

Open-Minded

		cf. Rave et	al. (2013)	cf. Agora (2017)
Heating mark	et	Ct / liter or kWh	EUR/t CO ₂	EUR/t CO ₂
Fuel oil	liter	6,14	22,87	7,68
Natural gas	kWh	0,55	27,10	18,71
Liquid gas	kWh	0,47	20,00	-
Fuel market				
Diesel	liter	47,04	178,10	57,88
Petrol	liter	65,45	280,00	65,17
Liquid gas	liter	8,96	59,50	-
Electricity market				
Electricity	kWh	2,05	19,50	185,40

Rave et al. (2013) consider all energy taxes and levies, also including non-environmental levies Agora (2017) consider only environmental related taxes and levies, for electricity EEG and CHP levies are included

Regulatory framework

- Benefits from a consistent pricing of CO₂ emissions across all sectors
 - Adequate incentives for storages, demand side management and sector coupling
 - Prices that better reflect actual scarcities (higher price differences between periods with scarcity and excess supply)
 - Appropriate costs and prices for CO₂ emitting generation technologies
 - Price based (not administrative) displacement of coal fired power plants
 - Proper incentives for the renewable energy mix and controllable renewables like biomass
 - Support of the spatial diversification of renewable technologies
- Challenges of CO₂ pricing
 - Distributional effects in the short-term → to mitigate those effects other taxes and levies without environmental effects should be omitted
 - Interdependencies with the ETS → national CO2 prices can be an intermediate solution, in the longer term an international solution should be envisaged

UNIVERSITÄT

Motivation	1
Market design	2
Regulatory framework	3
Contractual mechanisms	4
Conclusion	5

Contractual mechanisms

Key elements of contracts

Use of flexibility across the electricity system

UNIVERSITÄT

DUISBURG

- Focus of regulations and market rules mainly on large-scale flexibilities (until a few years ago)
- With new technologies like battery storages and the increasing role of consumers, aggregation and virtualization models are becoming more important

Contractual mechanisms

- The example of battery storage systems
 - More than 100.000 solar power home battery storage systems in Germany in 2018
 - Average battery capacity of ~8 kWh
 - Primarily located in Southern Germany
 - Mainly to increase self-consumption and stabilize the local distribution grid
- The utilization of home battery storage systems for the provision of grid services requires their aggregation or virtualization
 - At the TSO level utility scale batteries already participate in the balancing market
 - At the DSO level however the utilization for system services, e.g. congestion management, is still in its initial phase

UNIVERSITÄT

DUISBURG

- Pilot projects mainly driven by large DSOs
- For a comprehensive utilization also smaller DSOs need to be involved
- > Standardized contracts would support utilization of flexibilities for system services at DSO level

Contractual mechanisms

Key elements of contracts

- Contract type
 - Option vs. firm contracts
 - Banding vs. operation control contracts
 - Only real-time management or schedule prescriptions or both
- Technical elements
 - Duration
 - Limitations in frequency, energy or other characteristics of option calls
 - Availability requirements
 - Set point definition in active/reactive power, voltage or energy terms
- Value and risks
 - Pricing (base fee, energy fee)
 - Contractual handling of liabilities and risks (e.g. through penalties, index-based pricing, insurance clauses)
- Interference with grid fees (extra capacity fees) & grid connection regulations (e.g. obligatory provision of local services)

UNIVERSITÄT

DUISBURG

Motivation	1
Market design	2
Regulatory framework	3
Contractual mechanisms	4
Conclusion	5

Conclusion

- Market design
 - Market architecture and rules can have a significant impact on incentives for flexibilization
 - Continuity of market design will support the development of flexibility options
- Regulatory framework
 - Sector coupling as a key element to support the decarbonization
 - Cross-sectoral and consistent pricing of CO2-emissions will reduce barriers for flexibilization
 - To avoid negative interdependencies European solutions should be envisaged
- Contractual mechanisms
 - Increasing role of consumers drives the development of aggregator and virtualization models
 - Standardized contracts would
 - support the utilization of flexibilities for system services at the DSO level
 - help to develop promising business models and reduce barriers

Thank you for your attention!

Dr. Michael Bucksteeg

Member of the chair management House of Energy Markets and Finance University of Duisburg-Essen

Email: Michael.Bucksteeg@uni-due.de LinkedIn: https://www.linkedin.com/in/michael-bucksteeg www.ewl.wiwi.uni-due.de/en

References

Open-Minded

UNIVERSITÄT

- Agora Energiewende (2017): "Neue Preismodelle für Energie. Grundlagen einer Reform der Entgelte, Steuern, Abgaben und Umlagen auf Strom und fossile Energieträger." Hintergrund. Berlin, April 2017. available at: <u>https://www.agora-energiewende.de/fileadmin2/Projekte/2017/Abgaben_Umlagen/</u> <u>Agora_Abgaben_Umlagen_WEB.pdf</u>
- CEER (Council of European Energy Regulators) (2013): Regulatory and Market Aspects of Demand-Side Flexibility A CEER Public Consultation Document.
- EIA (U.S. Energy Information Administration) (2019): Glossary, available at: https://www.eia.gov/tools/glossary/index.php?id=D
- EU Commission (2016): Commission Regulation (EU) 2016/1388 of 17 August 2016 establishing a Network Code on Demand Connection (Text with EEA relevance), available at: <u>http://data.europa.eu/eli/reg/2016/1388/oj</u>
- Felten, B., Felling, T., Voswinkel, S., Weber, C. (2019): "Flow-Based Market Coupling The Effects of Using Heuristics, Lack of Cooperation and Process-Induced Uncertainties " - unpublished working paper.
- Figgener, M. et al. (2018): "Sektorenkopplung in Nordrhein-Westfalen Handlungsoptionen und Herausforderungen für das Energieland NRW," available at: http://www.speichermonitoring.de/fileadmin/user_upload/Speichermonitoring_Jahresbericht_2018_ISEA_RWTH_Aachen.pdf
- Sajjad, I.A. et al. (2016): "Definitions of Demand Flexibility for Aggregate Residential Loads," in IEEE TRANSACTIONS ON SMART GRID, VOL. 7, NO. 6, NOVEMBER 2016.
- Solarwirtschaft (2018): "Der 100.000. Solarstromspeicher in Deutschland," https://www.solarwirtschaft.de/index.php?id=875
- Umweltbundesamt (2016): "Treibhausgas-Emissionen in Deutschland 1990 bis 2016 nach Kategorien der UNFCCC-Berichterstattung," available at: https://www.umweltbundesamt.de/themen/klima-energie/klimaschutz-energiepolitik-in-deutschland/treibhausgas-emissionen/emissionsquellen#textpart-1
- Weber, C. (2018): "Konsistente CO2-Bepreisung und Sektorkopplung Notwendigkeiten und Hemmnisse," Eurosolar-Symposien 2017, available at: <u>https://www.ewl.wiwi.uni-due.de/fileadmin/fileupload/BWL-ENERGIE/Dokumente/Meldungen/Seiten_22b25_aus_SZA_1_2018.pdf</u>

