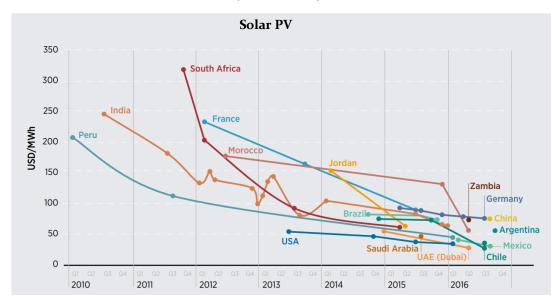


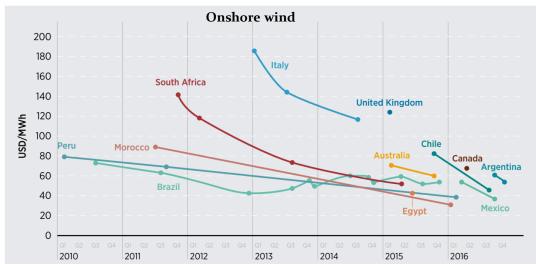
VRE development, increasing flexibility needs and the role of electric energy storage

Ph.D. Manuel VILLAVICENCIO Université Paris-Dauphine, PSL Research University LEDa – CGEMP

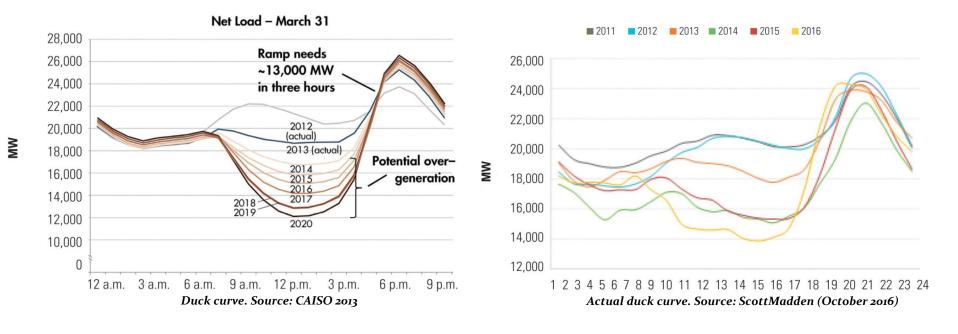
Chaire European Electricity Markets (CEEM) Université Paris-Dauphine

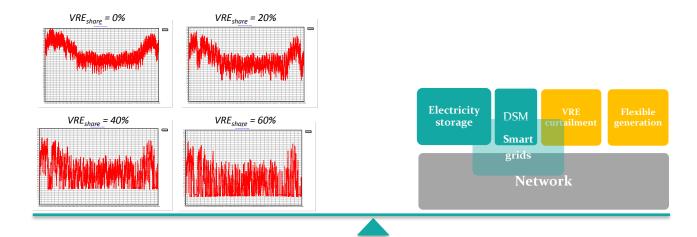


Paris 30/05/2018

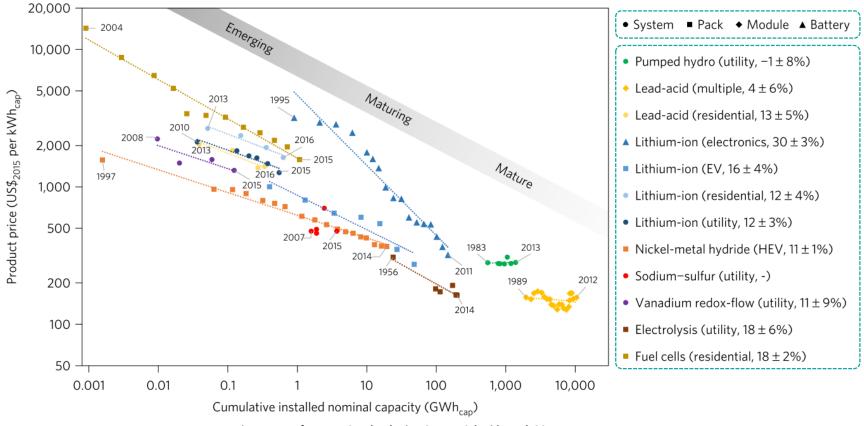


1. VRE development



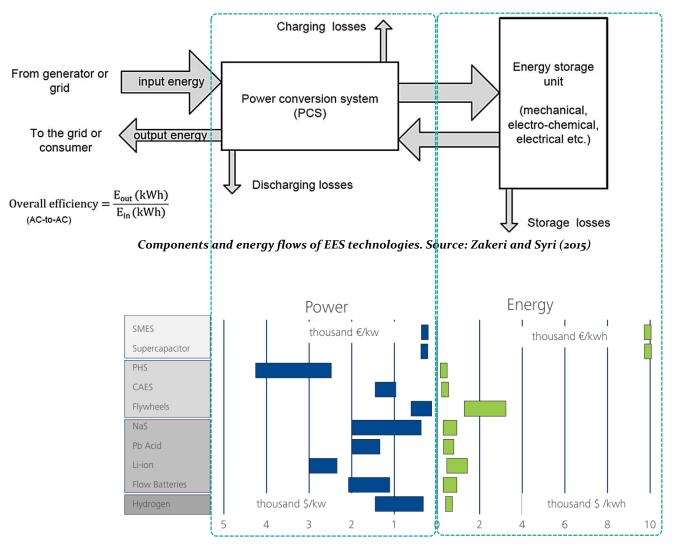

Evolution of average auctions prices for VRE technologies, January 2010-September 2016

2. Increasing flexibility needs

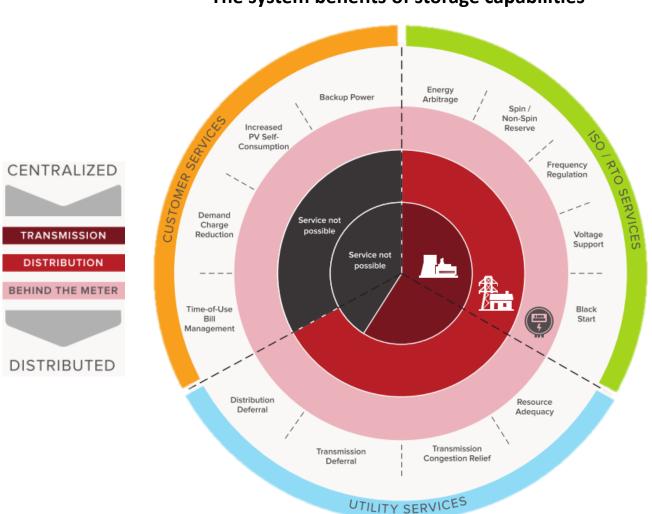


	Kinetic energy		Potential energy						
Thermal technologies	Electrical technologies	Mech		Electrochemical technologies	Chemical technologies				
Hot water	Supercapacitors	Flywheels	Pumped hydro	Lithium ion	Hydrogen				
Molten salt	Superconducting magnetic energy		Compressed air energy	Lead acid	Synthetic natura gas				
Phase change material				Redox flow					
				Sodium sulfur					

- *EES are a family of technologies using different energy conversion systems*
- Each technology has its own technical characteristics making them more or less suitable for different applications (see appendix for further details)



Learning curves of some EES technologies. Source: Schmidt et al. 2017


3. The role of electric energy storage

Cost ranges of energy storage technologies. Source: EPRI (2010) and SANDIA Labs (2011)

The system benefits of storage capabilities

Services that can be provided by EES technologies. Source: Fitzgerald et al. 2015 (RMI)

5 5

			Energy Storage Applications													
			Bulk Energy		Ancillary Services			T&D		Consumers			s	Renewable Integration		
		Key Excellent Synergies Good Synergies Fair Synergies Poor Synergies Incompatible	Electric Energy Timeshift	Electric Supply Capacity	Area Regulation	Electric Supply Reserve Capacity	Voltage Support	Transmission Congestion Relief	T&D Upgrade Deferral	Time-of-Use Energy Cost Management	Demand Charge Management	Electric Service Reliability	Electric ServicePower Quality	Renewables Energy Timeshift	Renewables Capacity Firming	Wind Generation Grid Integration
	Bulk Energy	Electric Energy Timeshift			•	•				Ο	Ο	Ο	Ο	•	•	
		Electric Supply Capacity				•		•		Ο	0	0	Ο			Ο
	Ancillary Services	Area Regulation				0	0	0	Ο	Ο	\bigcirc	0	Ο	\bigcirc	\mathbf{O}	Ο
		Electric Supply Reserve Capacity						0	•	•	•	0	Ο			\bigcirc
tion		Voltage Support ¹						9		•	•	•	•	•	•	Ο
Energy Storage Applications	T&D	Transmission Congestion Relief							•	•	•	\bigcirc	Ο	•	•	Ο
		T&D Upgrade Deferral								•	•	\bigcirc	Ο	•	•	Ο
	Consumers	Time-of-Use Energy Cost Management												•	•	0
		Demand Charge Management												•	•	Ο
		Electric Service Reliability												•	•	Ο
		Electric ServicePower Quality												Ο	Ο	Ο
		Renewables Energy Timeshift														
	Renewable Integration	Renewables Capacity Firming														
	-	Wind Generation Grid Integration														

Complementary energy storage application. Source: Eyer and Corey 2010 (Sandia lab)

• The case of EES on isolated systems (microgrids and islands):

It is currently the niche market for EES and « smart grid » solutions but also it is a open-air laboratory for prove of concepts. In such systems EES are being successfully deployed and operated (e.g. EDF SEI managing near 80% VRE systems in the Ile de Sein, Ile de Mafate, isolated villages in Guyana, etc.).

- \Rightarrow There is only a regulated entity across the hole value-chain of electricity supply.
- \Rightarrow The EMS is the key part of the system (i.e. "self-dispatch")
- \Rightarrow Proved technical and economical feasibility

• The case of EES on interconnected systems:

There is a growing need for flexibility as VRE penetration increases (e.g. CA, Hawai, South Australia, UK, Germany, PJM, etc.), so business cases of EES are improved and they start to take a place in the SyS markets. Nevertheless, there are still important market barriers and regulatory issues to be overcome for large-scale development.

- \Rightarrow The wholesale markets results on optimal schedules (MO) and then "central-dispatch" is operated by TSOs.
- \Rightarrow Taking advantage of learning-by-doing effects from isolated systems
- \Rightarrow Companies are taking stakes and preparing for the right incentives to go (e.g. The 27/03/2018 Electricity Storage Plan of EDF, the move of Total towards electricity business and the SAFT acquisition, etc.).

Some issues being addressed:

- Electrification is at the center of the EU decarbonization goals, and RES are perceived as the main mean for achieving them.
- The new EU Network Codes (2016-2017) points to the right direction for considering new market-products with higher granularity and gate closures closer to RT, thus, improving the case for a market-based development of new flexibility options.
- **Negotiations on the** « **The Winter Package** » considering and supporting EES and "smart grids" solutions.

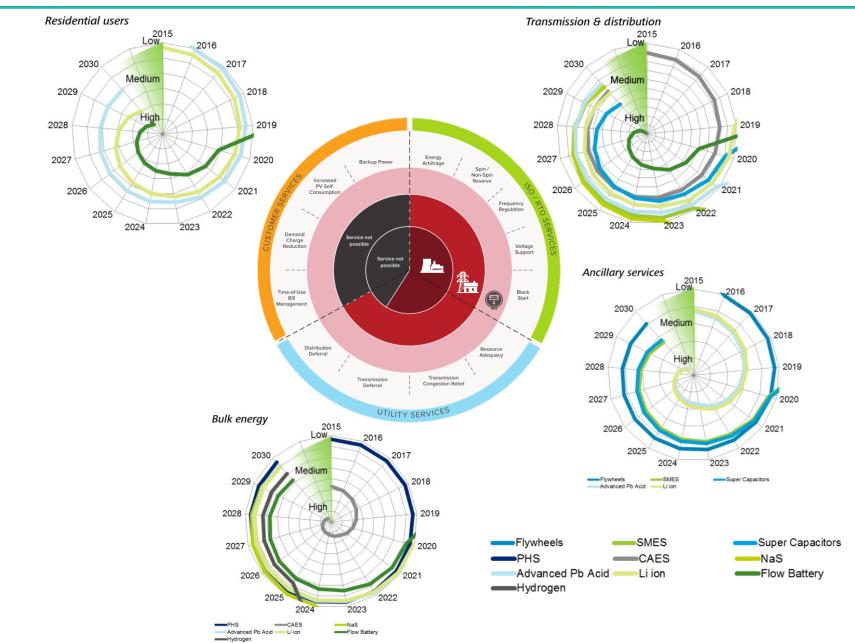
Some issues still to be addressed:

- There is a lack of locational price signals for using EES for alleviating congestion: Only System Operators (TSO-DSO coordination) are in the position for solving these issues (i.e. markets focusing to remunerate flexibility but there are no specific locational flexibility products).
- **Unbundling requirements in case of "non-wire" alternative to grid reinforcement** (e.g. The RINGO project): The Third Package legislation (Directive 2009/72/EC) foresees unbundling between generation/supply and transmission players based on different legal, functional and accounting degrees.
- **TSOs apply double grid fees to EES** while charging and discharging (but Germany, Austria and Ireland for PHS under specific conditions).
- Lack of coherence between the purposes and outcomes of distribution grid fees regarding EES: The Energy Efficiency Directive (Directive 2012/27/EC Article 15) and the Renewables Energy Directive (Directive 2009/28/EC Article 16 Access to and operation to the grid) require that network tariffs aim at supporting an increased overall system efficiency (including energy efficiency), demand response and integration of renewables, which are the main capabilities of storage technologies.

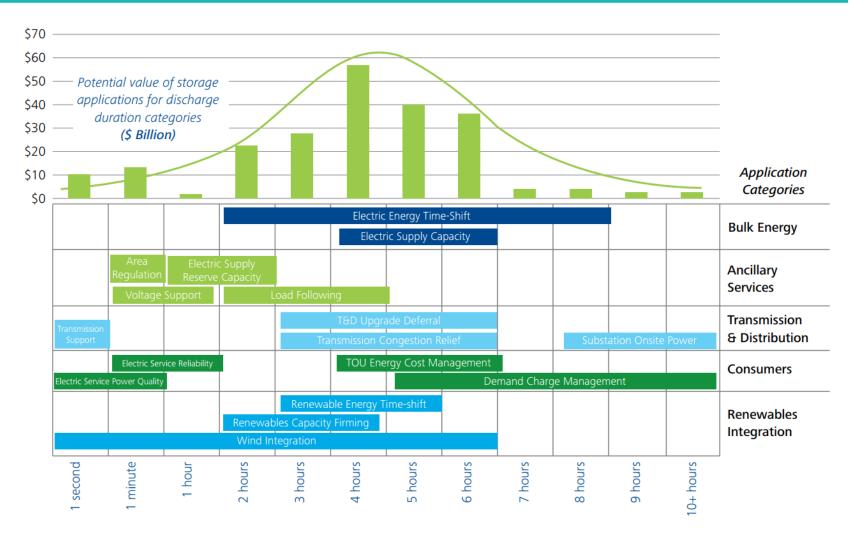
Thank you for your attention.

Any questions?

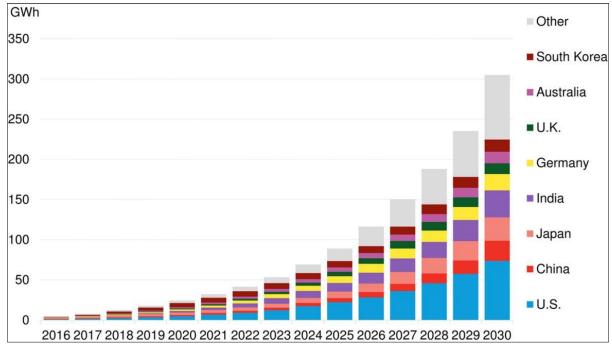
manuel.villavicenio@dauphine.fr


Chaire European Electricity Markets (CEEM) Université Paris-Dauphine

Motivation and research questions



Technologies	Power rating (MW)	Storage duration (h)	Cycling or lifetime	Self- discharge (%)	Energy density (Wh/I)	Power density (W/I)	Efficiency (%)	Response time
Super- capacitor	0.01-1	ms-min	10,000- 100,000	20-40	10-20	40,000- 120,000	80-98	10-20ms
SMES	0.1-1	ms-min	100,000	10-15	~6	1000-4000	80-95	< 100ms
PHS	100-1,000	4-12h	30-60 years	~0	0.2-2	0.1-0.2	70-85	sec-min
CAES	10-1,000	2-30h	20-40 years	~0	2-6	0.2-0.6	40-75	sec-min
Flywheels	0.001-1	sec-hours	20,000- 100,000	1.3-100	20-80	5,000	70-95	10-20ms
NaS battery	10-100	1min-8h	2,500-4,400	0.05-20	150-300	120-160	70-90	10-20ms
Li-ion battery	0.1-100	1min-8h	1,000-10,000	0.1-0.3	200-400	1,300-10,000	85-98	10-20ms
Flow battery	01-100	1-0h	12,000-14,000	0.2	20-70	0.5-2	60-85	10-20ms
Hydrogen	0.01-1.000	min-weeks	5-30 years	0-4	600 (200 bar)	0.2-20	25-45	sec-min
SNG	50-1.000	hours-weeks	30 years	negligible	1,800 (200 bar)	0.2-2	25-50	sec-min


Characteristics of energy storage technologies. Source: Delloite 2015

Energy storage applications and corresponding value for various discharge durations Source: Eyer and Corey 2010 (Sandia lab)

Global cumulative battery storage market. Source: Bloomberg New Energy Finance 2017